![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2l | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 752 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantll 750 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: funcnvqp 5990 mpteqb 6338 mpt2fun 6804 soxp 7335 wfrlem4 7463 oaass 7686 undifixp 7986 undom 8089 xpdom2 8096 tcrank 8785 inawinalem 9549 addcanpr 9906 ltsosr 9953 1re 10077 add42 10295 muladd 10500 mulsub 10511 divmuleq 10768 ltmul12a 10917 lemul12b 10918 lemul12a 10919 mulge0b 10931 qaddcl 11842 qmulcl 11844 iooshf 12290 fzass4 12417 elfzomelpfzo 12612 modid 12735 cshwleneq 13609 s2eq2seq 13728 tanaddlem 14940 fpwipodrs 17211 issubg4 17660 ghmpreima 17729 cntzsubg 17815 symgfixf1 17903 islmodd 18917 lssvsubcl 18992 lssvscl 19003 lmhmf1o 19094 pwsdiaglmhm 19105 lmimco 20231 scmatghm 20387 scmatmhm 20388 mat2pmatscmxcl 20593 fctop 20856 cctop 20858 opnneissb 20966 pnrmopn 21195 hausnei2 21205 neitx 21458 txcnmpt 21475 txrest 21482 tx1stc 21501 fbssfi 21688 opnfbas 21693 rnelfmlem 21803 alexsubALTlem3 21900 metcnp3 22392 cncfmet 22758 evth 22805 caucfil 23127 ovolun 23313 dveflem 23787 efnnfsumcl 24874 efchtdvds 24930 lgsdir2 25100 axdimuniq 25838 axcontlem2 25890 frgrwopreglem5lem 27300 frgrwopreglem5ALT 27302 friendship 27386 hvsub4 28022 his35 28073 shscli 28304 5oalem2 28642 3oalem2 28650 hosub4 28800 hmops 29007 hmopm 29008 hmopco 29010 adjmul 29079 adjadd 29080 mdslmd1lem1 29312 mdslmd1lem2 29313 elmrsubrn 31543 dfon2lem6 31817 funline 32374 neibastop2lem 32480 isbasisrelowllem1 33333 isbasisrelowllem2 33334 mbfposadd 33587 itg2addnc 33594 fdc 33671 seqpo 33673 ismtyval 33729 paddss12 35423 mzpcompact2lem 37631 jm2.26 37886 fmtnofac2lem 41805 rnghmsubcsetclem2 42301 rhmsubcsetclem2 42347 rhmsubcrngclem2 42353 zlmodzxzsubm 42462 ltsubaddb 42629 ltsubsubb 42630 |
Copyright terms: Public domain | W3C validator |