![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsmre | Structured version Visualization version GIF version |
Description: Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsmre | ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacs 16518 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))) | |
2 | 1 | simplbi 479 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∃wex 1851 ∈ wcel 2144 ∀wral 3060 ∩ cin 3720 ⊆ wss 3721 𝒫 cpw 4295 ∪ cuni 4572 “ cima 5252 ⟶wf 6027 ‘cfv 6031 Fincfn 8108 Moorecmre 16449 ACScacs 16452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-acs 16456 |
This theorem is referenced by: acsfiel 16521 acsmred 16523 mreacs 16525 isacs3lem 17373 symggen 18096 odf1o1 18193 lsmmod 18294 gsumzsplit 18533 gsumzoppg 18550 gsumpt 18567 dmdprdd 18605 dprdfeq0 18628 dprdspan 18633 dprdres 18634 dprdss 18635 subgdmdprd 18640 subgdprd 18641 dprdsn 18642 dprd2dlem1 18647 dprd2da 18648 dmdprdsplit2lem 18651 ablfac1b 18676 pgpfac1lem1 18680 pgpfac1lem3 18683 pgpfac1lem4 18684 pgpfac1lem5 18685 pgpfaclem1 18687 pgpfaclem2 18688 isnacs2 37788 proot1mul 38296 proot1hash 38297 |
Copyright terms: Public domain | W3C validator |