Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmapd Structured version   Visualization version   GIF version

Theorem acsmapd 17225
 Description: In an algebraic closure system, if 𝑇 is contained in the closure of 𝑆, there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that the closure of ∪ ran 𝑓 contains 𝑇. This is proven by applying acsficl2d 17223 to each element of 𝑇. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmapd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsmapd.2 𝑁 = (mrCls‘𝐴)
acsmapd.3 (𝜑𝑆𝑋)
acsmapd.4 (𝜑𝑇 ⊆ (𝑁𝑆))
Assertion
Ref Expression
acsmapd (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
Distinct variable groups:   𝑇,𝑓   𝜑,𝑓   𝑆,𝑓   𝑓,𝑁
Allowed substitution hints:   𝐴(𝑓)   𝑋(𝑓)

Proof of Theorem acsmapd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmapd.4 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑆))
2 fvex 6239 . . . . 5 (𝑁𝑆) ∈ V
32ssex 4835 . . . 4 (𝑇 ⊆ (𝑁𝑆) → 𝑇 ∈ V)
41, 3syl 17 . . 3 (𝜑𝑇 ∈ V)
51sseld 3635 . . . . 5 (𝜑 → (𝑥𝑇𝑥 ∈ (𝑁𝑆)))
6 acsmapd.1 . . . . . 6 (𝜑𝐴 ∈ (ACS‘𝑋))
7 acsmapd.2 . . . . . 6 𝑁 = (mrCls‘𝐴)
8 acsmapd.3 . . . . . 6 (𝜑𝑆𝑋)
96, 7, 8acsficl2d 17223 . . . . 5 (𝜑 → (𝑥 ∈ (𝑁𝑆) ↔ ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
105, 9sylibd 229 . . . 4 (𝜑 → (𝑥𝑇 → ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
1110ralrimiv 2994 . . 3 (𝜑 → ∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦))
12 fveq2 6229 . . . . 5 (𝑦 = (𝑓𝑥) → (𝑁𝑦) = (𝑁‘(𝑓𝑥)))
1312eleq2d 2716 . . . 4 (𝑦 = (𝑓𝑥) → (𝑥 ∈ (𝑁𝑦) ↔ 𝑥 ∈ (𝑁‘(𝑓𝑥))))
1413ac6sg 9348 . . 3 (𝑇 ∈ V → (∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))))
154, 11, 14sylc 65 . 2 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
16 simprl 809 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
17 nfv 1883 . . . . . . . 8 𝑥𝜑
18 nfv 1883 . . . . . . . . 9 𝑥 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)
19 nfra1 2970 . . . . . . . . 9 𝑥𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))
2018, 19nfan 1868 . . . . . . . 8 𝑥(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
2117, 20nfan 1868 . . . . . . 7 𝑥(𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
226ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (ACS‘𝑋))
2322acsmred 16364 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (Moore‘𝑋))
24 simplrl 817 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
25 ffn 6083 . . . . . . . . . . . . . 14 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → 𝑓 Fn 𝑇)
2624, 25syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓 Fn 𝑇)
27 fnfvelrn 6396 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑇𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2826, 27sylancom 702 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2928snssd 4372 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
3029unissd 4494 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
31 frn 6091 . . . . . . . . . . . . . 14 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin))
3231unissd 4494 . . . . . . . . . . . . 13 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 (𝒫 𝑆 ∩ Fin))
33 unifpw 8310 . . . . . . . . . . . . 13 (𝒫 𝑆 ∩ Fin) = 𝑆
3432, 33syl6sseq 3684 . . . . . . . . . . . 12 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓𝑆)
3524, 34syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑆)
368ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑆𝑋)
3735, 36sstrd 3646 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑋)
3823, 7, 30, 37mrcssd 16331 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑁 {(𝑓𝑥)}) ⊆ (𝑁 ran 𝑓))
39 simprr 811 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
4039r19.21bi 2961 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁‘(𝑓𝑥)))
41 fvex 6239 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
4241unisn 4483 . . . . . . . . . . 11 {(𝑓𝑥)} = (𝑓𝑥)
4342fveq2i 6232 . . . . . . . . . 10 (𝑁 {(𝑓𝑥)}) = (𝑁‘(𝑓𝑥))
4440, 43syl6eleqr 2741 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 {(𝑓𝑥)}))
4538, 44sseldd 3637 . . . . . . . 8 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 ran 𝑓))
4645ex 449 . . . . . . 7 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4721, 46alrimi 2120 . . . . . 6 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
48 dfss2 3624 . . . . . 6 (𝑇 ⊆ (𝑁 ran 𝑓) ↔ ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4947, 48sylibr 224 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑇 ⊆ (𝑁 ran 𝑓))
5016, 49jca 553 . . . 4 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
5150ex 449 . . 3 (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5251eximdv 1886 . 2 (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5315, 52mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ∩ cin 3606   ⊆ wss 3607  𝒫 cpw 4191  {csn 4210  ∪ cuni 4468  ran crn 5144   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  Fincfn 7997  mrClscmrc 16290  ACScacs 16292 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-r1 8665  df-rank 8666  df-card 8803  df-ac 8977  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-tset 16007  df-ple 16008  df-ocomp 16010  df-mre 16293  df-mrc 16294  df-acs 16296  df-preset 16975  df-drs 16976  df-poset 16993  df-ipo 17199 This theorem is referenced by:  acsmap2d  17226
 Copyright terms: Public domain W3C validator