Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsexdimd Structured version   Visualization version   GIF version

Theorem acsexdimd 17391
 Description: In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 16518 for the finite case and acsinfdimd 17390 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsexdimd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsexdimd.2 𝑁 = (mrCls‘𝐴)
acsexdimd.3 𝐼 = (mrInd‘𝐴)
acsexdimd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
acsexdimd.5 (𝜑𝑆𝐼)
acsexdimd.6 (𝜑𝑇𝐼)
acsexdimd.7 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Assertion
Ref Expression
acsexdimd (𝜑𝑆𝑇)
Distinct variable groups:   𝑆,𝑠,𝑦,𝑧   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem acsexdimd
StepHypRef Expression
1 acsexdimd.1 . . . . 5 (𝜑𝐴 ∈ (ACS‘𝑋))
21acsmred 16524 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
32adantr 466 . . 3 ((𝜑𝑆 ∈ Fin) → 𝐴 ∈ (Moore‘𝑋))
4 acsexdimd.2 . . 3 𝑁 = (mrCls‘𝐴)
5 acsexdimd.3 . . 3 𝐼 = (mrInd‘𝐴)
6 acsexdimd.4 . . . 4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
76adantr 466 . . 3 ((𝜑𝑆 ∈ Fin) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
8 acsexdimd.5 . . . 4 (𝜑𝑆𝐼)
98adantr 466 . . 3 ((𝜑𝑆 ∈ Fin) → 𝑆𝐼)
10 acsexdimd.6 . . . 4 (𝜑𝑇𝐼)
1110adantr 466 . . 3 ((𝜑𝑆 ∈ Fin) → 𝑇𝐼)
12 simpr 471 . . 3 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ Fin)
13 acsexdimd.7 . . . 4 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
1413adantr 466 . . 3 ((𝜑𝑆 ∈ Fin) → (𝑁𝑆) = (𝑁𝑇))
153, 4, 5, 7, 9, 11, 12, 14mreexfidimd 16518 . 2 ((𝜑𝑆 ∈ Fin) → 𝑆𝑇)
161adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝐴 ∈ (ACS‘𝑋))
178adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑆𝐼)
1810adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑇𝐼)
1913adantr 466 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → (𝑁𝑆) = (𝑁𝑇))
20 simpr 471 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → ¬ 𝑆 ∈ Fin)
2116, 4, 5, 17, 18, 19, 20acsinfdimd 17390 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑆𝑇)
2215, 21pm2.61dan 814 1 (𝜑𝑆𝑇)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061   ∖ cdif 3720   ∪ cun 3721  𝒫 cpw 4298  {csn 4317   class class class wbr 4787  ‘cfv 6030   ≈ cen 8110  Fincfn 8113  Moorecmre 16450  mrClscmrc 16451  mrIndcmri 16452  ACScacs 16453 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-reg 8657  ax-inf2 8706  ax-ac2 9491  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-oi 8575  df-r1 8795  df-rank 8796  df-card 8969  df-acn 8972  df-ac 9143  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-tset 16168  df-ple 16169  df-ocomp 16171  df-mre 16454  df-mrc 16455  df-mri 16456  df-acs 16457  df-preset 17136  df-drs 17137  df-poset 17154  df-ipo 17360 This theorem is referenced by:  lvecdim  19372
 Copyright terms: Public domain W3C validator