MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsdrsel Structured version   Visualization version   GIF version

Theorem acsdrsel 17375
Description: An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
acsdrsel ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → 𝑌𝐶)

Proof of Theorem acsdrsel
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6332 . . . . 5 (𝑠 = 𝑌 → (toInc‘𝑠) = (toInc‘𝑌))
21eleq1d 2835 . . . 4 (𝑠 = 𝑌 → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘𝑌) ∈ Dirset))
3 unieq 4582 . . . . 5 (𝑠 = 𝑌 𝑠 = 𝑌)
43eleq1d 2835 . . . 4 (𝑠 = 𝑌 → ( 𝑠𝐶 𝑌𝐶))
52, 4imbi12d 333 . . 3 (𝑠 = 𝑌 → (((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) ↔ ((toInc‘𝑌) ∈ Dirset → 𝑌𝐶)))
6 isacs3lem 17374 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
76simprd 483 . . . 4 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
87adantr 466 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
9 elpw2g 4958 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝑌 ∈ 𝒫 𝐶𝑌𝐶))
109biimpar 463 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶) → 𝑌 ∈ 𝒫 𝐶)
115, 8, 10rspcdva 3466 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶) → ((toInc‘𝑌) ∈ Dirset → 𝑌𝐶))
12113impia 1109 1 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → 𝑌𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wss 3723  𝒫 cpw 4297   cuni 4574  cfv 6031  Moorecmre 16450  ACScacs 16453  Dirsetcdrs 17135  toInccipo 17359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-tset 16168  df-ple 16169  df-ocomp 16171  df-mre 16454  df-mrc 16455  df-acs 16457  df-preset 17136  df-drs 17137  df-poset 17154  df-ipo 17360
This theorem is referenced by:  isnacs3  37799
  Copyright terms: Public domain W3C validator