MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acopyeu Structured version   Visualization version   GIF version

Theorem acopyeu 25945
Description: Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. Akin to a uniqueness theorem, this states that if two points 𝑋 and 𝑌 both fulfill the conditions, then they are on the same half-line. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
acopy.l 𝐿 = (LineG‘𝐺)
acopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
acopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
acopyeu.x (𝜑𝑋𝑃)
acopyeu.y (𝜑𝑌𝑃)
acopyeu.k 𝐾 = (hlG‘𝐺)
acopyeu.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
acopyeu.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
acopyeu.3 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
acopyeu.4 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
Assertion
Ref Expression
acopyeu (𝜑𝑋(𝐾𝐸)𝑌)

Proof of Theorem acopyeu
Dummy variables 𝑎 𝑑 𝑡 𝑥 𝑦 𝑏 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . 4 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . . 4 𝐼 = (Itv‘𝐺)
3 acopyeu.k . . . 4 𝐾 = (hlG‘𝐺)
4 acopyeu.x . . . . . 6 (𝜑𝑋𝑃)
54ad2antrr 764 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑋𝑃)
65ad3antrrr 768 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋𝑃)
7 simplr 809 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦𝑃)
8 acopyeu.y . . . . . 6 (𝜑𝑌𝑃)
98ad2antrr 764 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑌𝑃)
109ad3antrrr 768 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌𝑃)
11 dfcgra2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
1211ad2antrr 764 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐺 ∈ TarskiG)
1312ad3antrrr 768 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐺 ∈ TarskiG)
14 dfcgra2.e . . . . . 6 (𝜑𝐸𝑃)
1514ad2antrr 764 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸𝑃)
1615ad3antrrr 768 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐸𝑃)
17 dfcgra2.m . . . . . . 7 = (dist‘𝐺)
18 acopy.l . . . . . . 7 𝐿 = (LineG‘𝐺)
19 dfcgra2.a . . . . . . . . 9 (𝜑𝐴𝑃)
2019ad2antrr 764 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝑃)
2120ad3antrrr 768 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐴𝑃)
22 dfcgra2.b . . . . . . . . 9 (𝜑𝐵𝑃)
2322ad2antrr 764 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐵𝑃)
2423ad3antrrr 768 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐵𝑃)
25 dfcgra2.c . . . . . . . . 9 (𝜑𝐶𝑃)
2625ad2antrr 764 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐶𝑃)
2726ad3antrrr 768 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐶𝑃)
28 simplr 809 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝑃)
2928ad3antrrr 768 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑑𝑃)
30 dfcgra2.f . . . . . . . . 9 (𝜑𝐹𝑃)
3130ad2antrr 764 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐹𝑃)
3231ad3antrrr 768 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐹𝑃)
33 acopy.1 . . . . . . . . 9 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
3433ad2antrr 764 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
3534ad3antrrr 768 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
36 dfcgra2.d . . . . . . . . . 10 (𝜑𝐷𝑃)
3736ad2antrr 764 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐷𝑃)
38 acopy.2 . . . . . . . . . 10 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
3938ad2antrr 764 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
40 simprl 811 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑(𝐾𝐸)𝐷)
411, 2, 3, 28, 37, 15, 12, 18, 40hlln 25722 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑 ∈ (𝐷𝐿𝐸))
421, 2, 3, 28, 37, 15, 12, 40hlne1 25720 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝐸)
431, 2, 18, 12, 37, 15, 31, 28, 39, 41, 42ncolncol 25761 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
4443ad3antrrr 768 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
45 simprr 813 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐸 𝑑) = (𝐵 𝐴))
461, 17, 2, 12, 15, 28, 23, 20, 45tgcgrcomlr 25595 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝑑 𝐸) = (𝐴 𝐵))
4746eqcomd 2766 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐴 𝐵) = (𝑑 𝐸))
4847ad3antrrr 768 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝐴 𝐵) = (𝑑 𝐸))
49 simpl 474 . . . . . . . . . . 11 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑢 = 𝑎)
5049eleq1d 2824 . . . . . . . . . 10 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))
51 simpr 479 . . . . . . . . . . 11 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑣 = 𝑏)
5251eleq1d 2824 . . . . . . . . . 10 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))
5350, 52anbi12d 749 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸)))))
54 simpr 479 . . . . . . . . . . 11 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑤 = 𝑡)
55 simpll 807 . . . . . . . . . . . 12 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑢 = 𝑎)
56 simplr 809 . . . . . . . . . . . 12 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑣 = 𝑏)
5755, 56oveq12d 6832 . . . . . . . . . . 11 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑢𝐼𝑣) = (𝑎𝐼𝑏))
5854, 57eleq12d 2833 . . . . . . . . . 10 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑤 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝑎𝐼𝑏)))
5958cbvrexdva 3317 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))
6053, 59anbi12d 749 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → (((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))))
6160cbvopabv 4874 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
62 simpllr 817 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥𝑃)
63 simprll 821 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩)
64 simprrl 823 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩)
651, 2, 18, 11, 36, 14, 30, 38ncolne1 25740 . . . . . . . . . . . . 13 (𝜑𝐷𝐸)
661, 2, 18, 11, 36, 14, 65tgelrnln 25745 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
6766ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
681, 2, 18, 11, 36, 14, 65tglinerflx2 25749 . . . . . . . . . . . 12 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
6968ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸 ∈ (𝐷𝐿𝐸))
701, 2, 18, 12, 28, 15, 42, 42, 67, 41, 69tglinethru 25751 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
7170, 67eqeltrrd 2840 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝑑𝐿𝐸) ∈ ran 𝐿)
7271ad3antrrr 768 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑑𝐿𝐸) ∈ ran 𝐿)
7361eqcomi 2769 . . . . . . . 8 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣))}
7469, 70eleqtrd 2841 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸 ∈ (𝑑𝐿𝐸))
7574ad3antrrr 768 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐸 ∈ (𝑑𝐿𝐸))
7637ad3antrrr 768 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐷𝑃)
77 acopyeu.1 . . . . . . . . . . . . . . . 16 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
781, 18, 2, 11, 22, 25, 19, 33ncolrot2 25678 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
791, 2, 17, 11, 19, 22, 25, 36, 14, 4, 77, 18, 78cgrancol 25940 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑋 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
801, 18, 2, 11, 36, 14, 4, 79ncolcom 25676 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
8180ad5antr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
82 simprlr 822 . . . . . . . . . . . . . 14 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥(𝐾𝐸)𝑋)
831, 2, 3, 62, 6, 16, 13, 18, 82hlln 25722 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥 ∈ (𝑋𝐿𝐸))
841, 2, 3, 62, 6, 16, 13, 82hlne1 25720 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥𝐸)
851, 2, 18, 13, 6, 16, 76, 62, 81, 83, 84ncolncol 25761 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
861, 18, 2, 13, 16, 76, 62, 85ncolcom 25676 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
87 pm2.45 411 . . . . . . . . . . 11 (¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
8886, 87syl 17 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
8970ad3antrrr 768 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
9089eleq2d 2825 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑥 ∈ (𝐷𝐿𝐸) ↔ 𝑥 ∈ (𝑑𝐿𝐸)))
9188, 90mtbid 313 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑥 ∈ (𝑑𝐿𝐸))
921, 2, 18, 13, 72, 16, 61, 3, 75, 62, 6, 91, 82hphl 25883 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑋)
93 acopyeu.3 . . . . . . . . . 10 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
9493ad5antr 775 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
9570fveq2d 6357 . . . . . . . . . . 11 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
9695ad3antrrr 768 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
9796breqd 4815 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹𝑋((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹))
9894, 97mpbid 222 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
991, 2, 18, 13, 72, 62, 73, 6, 92, 32, 98hpgtr 25880 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
100 acopyeu.2 . . . . . . . . . . . . . . . 16 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
1011, 2, 17, 11, 19, 22, 25, 36, 14, 8, 100, 18, 78cgrancol 25940 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑌 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
1021, 18, 2, 11, 36, 14, 8, 101ncolcom 25676 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
103102ad5antr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
104 simprrr 824 . . . . . . . . . . . . . 14 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦(𝐾𝐸)𝑌)
1051, 2, 3, 7, 10, 16, 13, 18, 104hlln 25722 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦 ∈ (𝑌𝐿𝐸))
1061, 2, 3, 7, 10, 16, 13, 104hlne1 25720 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦𝐸)
1071, 2, 18, 13, 10, 16, 76, 7, 103, 105, 106ncolncol 25761 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
1081, 18, 2, 13, 16, 76, 7, 107ncolcom 25676 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
109 pm2.45 411 . . . . . . . . . . 11 (¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑦 ∈ (𝐷𝐿𝐸))
110108, 109syl 17 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑦 ∈ (𝐷𝐿𝐸))
11189eleq2d 2825 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑦 ∈ (𝐷𝐿𝐸) ↔ 𝑦 ∈ (𝑑𝐿𝐸)))
112110, 111mtbid 313 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑦 ∈ (𝑑𝐿𝐸))
1131, 2, 18, 13, 72, 16, 61, 3, 75, 7, 10, 112, 104hphl 25883 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑌)
114 acopyeu.4 . . . . . . . . . 10 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
115114ad5antr 775 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
11696breqd 4815 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹𝑌((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹))
117115, 116mpbid 222 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
1181, 2, 18, 13, 72, 7, 73, 10, 113, 32, 117hpgtr 25880 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
1191, 17, 2, 18, 3, 13, 21, 24, 27, 29, 16, 32, 35, 44, 48, 61, 62, 7, 63, 64, 99, 118trgcopyeulem 25917 . . . . . 6 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥 = 𝑦)
120119, 82eqbrtrrd 4828 . . . . 5 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦(𝐾𝐸)𝑋)
1211, 2, 3, 7, 6, 16, 13, 120hlcomd 25719 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋(𝐾𝐸)𝑦)
1221, 2, 3, 6, 7, 10, 13, 16, 121, 104hltr 25725 . . 3 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋(𝐾𝐸)𝑌)
12377ad2antrr 764 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
1241, 2, 3, 12, 20, 23, 26, 37, 15, 5, 123, 28, 40cgrahl1 25928 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑋”⟩)
1251, 2, 18, 11, 19, 22, 25, 33ncolne1 25740 . . . . . . 7 (𝜑𝐴𝐵)
126125ad2antrr 764 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝐵)
1271, 2, 3, 12, 20, 23, 26, 28, 15, 5, 17, 126, 47iscgra1 25922 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑋”⟩ ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋)))
128124, 127mpbid 222 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋))
129100ad2antrr 764 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
1301, 2, 3, 12, 20, 23, 26, 37, 15, 9, 129, 28, 40cgrahl1 25928 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑌”⟩)
1311, 2, 3, 12, 20, 23, 26, 28, 15, 9, 17, 126, 47iscgra1 25922 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑌”⟩ ↔ ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
132130, 131mpbid 222 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))
133 reeanv 3245 . . . 4 (∃𝑥𝑃𝑦𝑃 ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)) ↔ (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
134128, 132, 133sylanbrc 701 . . 3 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑥𝑃𝑦𝑃 ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
135122, 134r19.29vva 3219 . 2 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑋(𝐾𝐸)𝑌)
136125necomd 2987 . . 3 (𝜑𝐵𝐴)
1371, 2, 3, 14, 22, 19, 11, 36, 17, 65, 136hlcgrex 25731 . 2 (𝜑 → ∃𝑑𝑃 (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴)))
138135, 137r19.29a 3216 1 (𝜑𝑋(𝐾𝐸)𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  cdif 3712   class class class wbr 4804  {copab 4864  ran crn 5267  cfv 6049  (class class class)co 6814  ⟨“cs3 13807  Basecbs 16079  distcds 16172  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556  cgrGccgrg 25625  hlGchlg 25715  hpGchpg 25869  cgrAccgra 25919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-concat 13507  df-s1 13508  df-s2 13813  df-s3 13814  df-trkgc 25567  df-trkgb 25568  df-trkgcb 25569  df-trkgld 25571  df-trkg 25572  df-cgrg 25626  df-leg 25698  df-hlg 25716  df-mir 25768  df-rag 25809  df-perpg 25811  df-hpg 25870  df-mid 25886  df-lmi 25887  df-cgra 25920
This theorem is referenced by:  tgasa1  25959
  Copyright terms: Public domain W3C validator