MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnnum Structured version   Visualization version   GIF version

Theorem acnnum 8860
Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnnum (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)

Proof of Theorem acnnum
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4841 . . . . . . 7 (𝑋AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V)
2 difss 3729 . . . . . . 7 (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋
3 ssdomg 7986 . . . . . . 7 (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋))
41, 2, 3mpisyl 21 . . . . . 6 (𝑋AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)
5 acndom 8859 . . . . . 6 ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅})))
64, 5mpcom 38 . . . . 5 (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅}))
7 eldifsn 4308 . . . . . . 7 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅))
8 elpwi 4159 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
98anim1i 591 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑥𝑋𝑥 ≠ ∅))
107, 9sylbi 207 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥𝑋𝑥 ≠ ∅))
1110rgen 2919 . . . . 5 𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)
12 acni2 8854 . . . . 5 ((𝑋AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
136, 11, 12sylancl 693 . . . 4 (𝑋AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
14 simpr 477 . . . . . 6 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥)
157imbi1i 339 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥))
16 impexp 462 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1715, 16bitri 264 . . . . . . 7 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1817ralbii2 2975 . . . . . 6 (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1914, 18sylib 208 . . . . 5 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2019eximi 1760 . . . 4 (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2113, 20syl 17 . . 3 (𝑋AC 𝒫 𝑋 → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
22 dfac8a 8838 . . 3 (𝑋AC 𝒫 𝑋 → (∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝑋 ∈ dom card))
2321, 22mpd 15 . 2 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
24 pwexg 4841 . . 3 (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V)
25 numacn 8857 . . 3 (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋))
2624, 25mpcom 38 . 2 (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋)
2723, 26impbii 199 1 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wex 1702  wcel 1988  wne 2791  wral 2909  Vcvv 3195  cdif 3564  wss 3567  c0 3907  𝒫 cpw 4149  {csn 4168   class class class wbr 4644  dom cdm 5104  wf 5872  cfv 5876  cdom 7938  cardccrd 8746  AC wacn 8749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-1o 7545  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-fin 7944  df-card 8750  df-acn 8753
This theorem is referenced by:  dfac13  8949
  Copyright terms: Public domain W3C validator