MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom Structured version   Visualization version   GIF version

Theorem acndom 8912
Description: A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))

Proof of Theorem acndom
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8008 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
2 neq0 3963 . . . . 5 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
3 simpl3 1086 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑋AC 𝐵)
4 elmapi 7921 . . . . . . . . . . . . . . 15 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
54ad2antlr 763 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
6 simpll1 1120 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → 𝑓:𝐴1-1𝐵)
7 f1f1orn 6186 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1𝐵𝑓:𝐴1-1-onto→ran 𝑓)
8 f1ocnv 6187 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝐴)
9 f1of 6175 . . . . . . . . . . . . . . . . 17 (𝑓:ran 𝑓1-1-onto𝐴𝑓:ran 𝑓𝐴)
106, 7, 8, 94syl 19 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → 𝑓:ran 𝑓𝐴)
1110ffvelrnda 6399 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) ∧ 𝑦 ∈ ran 𝑓) → (𝑓𝑦) ∈ 𝐴)
12 simpl2 1085 . . . . . . . . . . . . . . . 16 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑥𝐴)
1312ad2antrr 762 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) ∧ ¬ 𝑦 ∈ ran 𝑓) → 𝑥𝐴)
1411, 13ifclda 4153 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) ∈ 𝐴)
155, 14ffvelrnd 6400 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}))
16 eldifsn 4350 . . . . . . . . . . . . . 14 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) ↔ ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
17 elpwi 4201 . . . . . . . . . . . . . . 15 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋)
1817anim1i 591 . . . . . . . . . . . . . 14 (((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
1916, 18sylbi 207 . . . . . . . . . . . . 13 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2015, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2120ralrimiva 2995 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
22 acni2 8907 . . . . . . . . . . 11 ((𝑋AC 𝐵 ∧ ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
233, 21, 22syl2anc 694 . . . . . . . . . 10 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
24 f1dm 6143 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵 → dom 𝑓 = 𝐴)
25 vex 3234 . . . . . . . . . . . . . . 15 𝑓 ∈ V
2625dmex 7141 . . . . . . . . . . . . . 14 dom 𝑓 ∈ V
2724, 26syl6eqelr 2739 . . . . . . . . . . . . 13 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
28273ad2ant1 1102 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝐴 ∈ V)
2928ad2antrr 762 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → 𝐴 ∈ V)
30 simpll1 1120 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1𝐵)
31 f1f 6139 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
32 frn 6091 . . . . . . . . . . . . . . . 16 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
33 ssralv 3699 . . . . . . . . . . . . . . . 16 (ran 𝑓𝐵 → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . 15 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
35 iftrue 4125 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran 𝑓 → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) = (𝑓𝑦))
3635fveq2d 6233 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ran 𝑓 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) = (𝑔‘(𝑓𝑦)))
3736eleq2d 2716 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ran 𝑓 → ((𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ (𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
3837ralbiia 3008 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)))
3934, 38syl6ib 241 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
40 f1fn 6140 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1𝐵𝑓 Fn 𝐴)
41 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑘𝑦) = (𝑘‘(𝑓𝑧)))
42 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑧) → (𝑓𝑦) = (𝑓‘(𝑓𝑧)))
4342fveq2d 6233 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑔‘(𝑓𝑦)) = (𝑔‘(𝑓‘(𝑓𝑧))))
4441, 43eleq12d 2724 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑧) → ((𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4544ralrn 6402 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝐴 → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4630, 40, 453syl 18 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4739, 46sylibd 229 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4830, 7syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1-onto→ran 𝑓)
49 f1ocnvfv1 6572 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→ran 𝑓𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
5048, 49sylan 487 . . . . . . . . . . . . . . . 16 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
5150fveq2d 6233 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑔‘(𝑓‘(𝑓𝑧))) = (𝑔𝑧))
5251eleq2d 2716 . . . . . . . . . . . . . 14 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → ((𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5352ralbidva 3014 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5447, 53sylibd 229 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5554impr 648 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧))
56 acnlem 8909 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5729, 55, 56syl2anc 694 . . . . . . . . . 10 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5823, 57exlimddv 1903 . . . . . . . . 9 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5958ralrimiva 2995 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
60 elex 3243 . . . . . . . . . 10 (𝑋AC 𝐵𝑋 ∈ V)
61 isacn 8905 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6260, 27, 61syl2anr 494 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
63623adant2 1100 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6459, 63mpbird 247 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝑋AC 𝐴)
65643exp 1283 . . . . . 6 (𝑓:𝐴1-1𝐵 → (𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
6665exlimdv 1901 . . . . 5 (𝑓:𝐴1-1𝐵 → (∃𝑥 𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
672, 66syl5bi 232 . . . 4 (𝑓:𝐴1-1𝐵 → (¬ 𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴)))
68 acneq 8904 . . . . . . 7 (𝐴 = ∅ → AC 𝐴 = AC ∅)
69 0fin 8229 . . . . . . . 8 ∅ ∈ Fin
70 finacn 8911 . . . . . . . 8 (∅ ∈ Fin → AC ∅ = V)
7169, 70ax-mp 5 . . . . . . 7 AC ∅ = V
7268, 71syl6eq 2701 . . . . . 6 (𝐴 = ∅ → AC 𝐴 = V)
7372eleq2d 2716 . . . . 5 (𝐴 = ∅ → (𝑋AC 𝐴𝑋 ∈ V))
7460, 73syl5ibr 236 . . . 4 (𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴))
7567, 74pm2.61d2 172 . . 3 (𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
7675exlimiv 1898 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
771, 76syl 17 1 (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  Vcvv 3231  cdif 3604  wss 3607  c0 3948  ifcif 4119  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  ccnv 5142  dom cdm 5143  ran crn 5144   Fn wfn 5921  wf 5922  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  cdom 7995  Fincfn 7997  AC wacn 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-1o 7605  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-fin 8001  df-acn 8806
This theorem is referenced by:  acnnum  8913  acnen  8914  iunctb  9434
  Copyright terms: Public domain W3C validator