![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acacni | Structured version Visualization version GIF version |
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acacni | ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 471 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
2 | vex 3354 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | simpl 468 | . . . . . 6 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → CHOICE) | |
4 | dfac10 9161 | . . . . . 6 ⊢ (CHOICE ↔ dom card = V) | |
5 | 3, 4 | sylib 208 | . . . . 5 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → dom card = V) |
6 | 2, 5 | syl5eleqr 2857 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝑥 ∈ dom card) |
7 | numacn 9072 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ dom card → 𝑥 ∈ AC 𝐴)) | |
8 | 1, 6, 7 | sylc 65 | . . 3 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝑥 ∈ AC 𝐴) |
9 | 2 | a1i 11 | . . 3 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝑥 ∈ V) |
10 | 8, 9 | 2thd 255 | . 2 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V)) |
11 | 10 | eqrdv 2769 | 1 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 dom cdm 5249 cardccrd 8961 AC wacn 8964 CHOICEwac 9138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-card 8965 df-acn 8968 df-ac 9139 |
This theorem is referenced by: dfacacn 9165 dfac13 9166 ptcls 21640 dfac14 21642 |
Copyright terms: Public domain | W3C validator |