MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sg Structured version   Visualization version   GIF version

Theorem ac6sg 9522
Description: ac6s 9518 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.)
Hypothesis
Ref Expression
ac6sg.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sg (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥,𝑦   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem ac6sg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 raleq 3277 . . 3 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑))
2 feq2 6188 . . . . 5 (𝑧 = 𝐴 → (𝑓:𝑧𝐵𝑓:𝐴𝐵))
3 raleq 3277 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧 𝜓 ↔ ∀𝑥𝐴 𝜓))
42, 3anbi12d 749 . . . 4 (𝑧 = 𝐴 → ((𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
54exbidv 1999 . . 3 (𝑧 = 𝐴 → (∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓) ↔ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
61, 5imbi12d 333 . 2 (𝑧 = 𝐴 → ((∀𝑥𝑧𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓)) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))))
7 vex 3343 . . 3 𝑧 ∈ V
8 ac6sg.1 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
97, 8ac6s 9518 . 2 (∀𝑥𝑧𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓))
106, 9vtoclg 3406 1 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2139  wral 3050  wrex 3051  wf 6045  cfv 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-reg 8664  ax-inf2 8713  ax-ac2 9497
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-en 8124  df-r1 8802  df-rank 8803  df-card 8975  df-ac 9149
This theorem is referenced by:  acsmapd  17399  foresf1o  29671  reff  30236  cmpcref  30247  omssubadd  30692  ac6gf  33858
  Copyright terms: Public domain W3C validator