Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s3f Structured version   Visualization version   GIF version

Theorem ac6s3f 34284
Description: Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
ac6s3f.1 𝑦𝜓
ac6s3f.2 𝐴 ∈ V
ac6s3f.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s3f (∀𝑥𝐴𝑦𝜑 → ∃𝑓𝑥𝐴 𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦   𝑥,𝐴,𝑓   𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s3f
StepHypRef Expression
1 rexv 3352 . . . 4 (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑)
21ralbii 3110 . . 3 (∀𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀𝑥𝐴𝑦𝜑)
32biimpri 218 . 2 (∀𝑥𝐴𝑦𝜑 → ∀𝑥𝐴𝑦 ∈ V 𝜑)
4 ac6s3f.1 . . 3 𝑦𝜓
5 ac6s3f.2 . . 3 𝐴 ∈ V
6 ac6s3f.3 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
74, 5, 6ac6sf 9495 . 2 (∀𝑥𝐴𝑦 ∈ V 𝜑 → ∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓))
8 exsimpr 1937 . 2 (∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓) → ∃𝑓𝑥𝐴 𝜓)
93, 7, 83syl 18 1 (∀𝑥𝐴𝑦𝜑 → ∃𝑓𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wex 1845  wnf 1849  wcel 2131  wral 3042  wrex 3043  Vcvv 3332  wf 6037  cfv 6041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-reg 8654  ax-inf2 8703  ax-ac2 9469
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-en 8114  df-r1 8792  df-rank 8793  df-card 8947  df-ac 9121
This theorem is referenced by:  ac6s6  34285
  Copyright terms: Public domain W3C validator