![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ac6s3f | Structured version Visualization version GIF version |
Description: Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
Ref | Expression |
---|---|
ac6s3f.1 | ⊢ Ⅎ𝑦𝜓 |
ac6s3f.2 | ⊢ 𝐴 ∈ V |
ac6s3f.3 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6s3f | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexv 3352 | . . . 4 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
2 | 1 | ralbii 3110 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑) |
3 | 2 | biimpri 218 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑) |
4 | ac6s3f.1 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
5 | ac6s3f.2 | . . 3 ⊢ 𝐴 ∈ V | |
6 | ac6s3f.3 | . . 3 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
7 | 4, 5, 6 | ac6sf 9495 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 → ∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
8 | exsimpr 1937 | . 2 ⊢ (∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑓∀𝑥 ∈ 𝐴 𝜓) | |
9 | 3, 7, 8 | 3syl 18 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∃wex 1845 Ⅎwnf 1849 ∈ wcel 2131 ∀wral 3042 ∃wrex 3043 Vcvv 3332 ⟶wf 6037 ‘cfv 6041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-reg 8654 ax-inf2 8703 ax-ac2 9469 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-en 8114 df-r1 8792 df-rank 8793 df-card 8947 df-ac 9121 |
This theorem is referenced by: ac6s6 34285 |
Copyright terms: Public domain | W3C validator |