![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6s2 | Structured version Visualization version GIF version |
Description: Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 9510. (Contributed by NM, 29-Sep-2006.) |
Ref | Expression |
---|---|
ac6s.1 | ⊢ 𝐴 ∈ V |
ac6s.2 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6s2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexv 3369 | . . 3 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
2 | 1 | ralbii 3128 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑) |
3 | ac6s.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | ac6s.2 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | ac6s 9507 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 → ∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | ffn 6185 | . . . . 5 ⊢ (𝑓:𝐴⟶V → 𝑓 Fn 𝐴) | |
7 | 6 | anim1i 594 | . . . 4 ⊢ ((𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓) → (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
8 | 7 | eximi 1909 | . . 3 ⊢ (∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
9 | 5, 8 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
10 | 2, 9 | sylbir 225 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∃wex 1851 ∈ wcel 2144 ∀wral 3060 ∃wrex 3061 Vcvv 3349 Fn wfn 6026 ⟶wf 6027 ‘cfv 6031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-reg 8652 ax-inf2 8701 ax-ac2 9486 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-en 8109 df-r1 8790 df-rank 8791 df-card 8964 df-ac 9138 |
This theorem is referenced by: ac6s3 9510 ac6s4 9513 ptpconn 31547 |
Copyright terms: Public domain | W3C validator |