MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6num Structured version   Visualization version   GIF version

Theorem ac6num 9339
Description: A version of ac6 9340 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
ac6num.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6num ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem ac6num
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 4582 . . . . . . . . 9 𝑥 𝑥𝐴 {𝑦𝐵𝜑}
21nfel1 2808 . . . . . . . 8 𝑥 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card
3 ssiun2 4595 . . . . . . . . 9 (𝑥𝐴 → {𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑})
4 ssexg 4837 . . . . . . . . . 10 (({𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑} ∧ 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card) → {𝑦𝐵𝜑} ∈ V)
54expcom 450 . . . . . . . . 9 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ({𝑦𝐵𝜑} ⊆ 𝑥𝐴 {𝑦𝐵𝜑} → {𝑦𝐵𝜑} ∈ V))
63, 5syl5 34 . . . . . . . 8 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → (𝑥𝐴 → {𝑦𝐵𝜑} ∈ V))
72, 6ralrimi 2986 . . . . . . 7 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V)
8 dfiun2g 4584 . . . . . . 7 (∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}})
97, 8syl 17 . . . . . 6 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}})
10 eqid 2651 . . . . . . . 8 (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = (𝑥𝐴 ↦ {𝑦𝐵𝜑})
1110rnmpt 5403 . . . . . . 7 ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}}
1211unieqi 4477 . . . . . 6 ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = {𝑦𝐵𝜑}}
139, 12syl6eqr 2703 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} = ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
14 id 22 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card)
1513, 14eqeltrrd 2731 . . . 4 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card → ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card)
16153ad2ant2 1103 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card)
17 simp3 1083 . . . . 5 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∀𝑥𝐴𝑦𝐵 𝜑)
18 necom 2876 . . . . . . . 8 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∅ ≠ {𝑦𝐵𝜑})
19 rabn0 3991 . . . . . . . 8 ({𝑦𝐵𝜑} ≠ ∅ ↔ ∃𝑦𝐵 𝜑)
20 df-ne 2824 . . . . . . . 8 (∅ ≠ {𝑦𝐵𝜑} ↔ ¬ ∅ = {𝑦𝐵𝜑})
2118, 19, 203bitr3i 290 . . . . . . 7 (∃𝑦𝐵 𝜑 ↔ ¬ ∅ = {𝑦𝐵𝜑})
2221ralbii 3009 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴 ¬ ∅ = {𝑦𝐵𝜑})
23 ralnex 3021 . . . . . 6 (∀𝑥𝐴 ¬ ∅ = {𝑦𝐵𝜑} ↔ ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2422, 23bitri 264 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2517, 24sylib 208 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ¬ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
26 0ex 4823 . . . . 5 ∅ ∈ V
2710elrnmpt 5404 . . . . 5 (∅ ∈ V → (∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ↔ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑}))
2826, 27ax-mp 5 . . . 4 (∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ↔ ∃𝑥𝐴 ∅ = {𝑦𝐵𝜑})
2925, 28sylnibr 318 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ¬ ∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
30 ac5num 8897 . . 3 (( ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∈ dom card ∧ ¬ ∅ ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})) → ∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
3116, 29, 30syl2anc 694 . 2 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
32 ffn 6083 . . . . . 6 (𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) → 𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}))
3332anim1i 591 . . . . 5 ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧))
3473ad2ant2 1103 . . . . . . 7 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V)
35 fveq2 6229 . . . . . . . . 9 (𝑧 = {𝑦𝐵𝜑} → (𝑔𝑧) = (𝑔‘{𝑦𝐵𝜑}))
36 id 22 . . . . . . . . 9 (𝑧 = {𝑦𝐵𝜑} → 𝑧 = {𝑦𝐵𝜑})
3735, 36eleq12d 2724 . . . . . . . 8 (𝑧 = {𝑦𝐵𝜑} → ((𝑔𝑧) ∈ 𝑧 ↔ (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
3810, 37ralrnmpt 6408 . . . . . . 7 (∀𝑥𝐴 {𝑦𝐵𝜑} ∈ V → (∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
3934, 38syl 17 . . . . . 6 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → (∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}))
4039anbi2d 740 . . . . 5 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) ↔ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})))
4133, 40syl5ib 234 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})))
423sseld 3635 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → (𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑}))
4342ralimia 2979 . . . . . . . . . 10 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑})
4443ad2antll 765 . . . . . . . . 9 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑})
45 nfv 1883 . . . . . . . . . 10 𝑧(𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑}
46 nfcsb1v 3582 . . . . . . . . . . 11 𝑥𝑧 / 𝑥(𝑔‘{𝑦𝐵𝜑})
4746, 1nfel 2806 . . . . . . . . . 10 𝑥𝑧 / 𝑥(𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑}
48 csbeq1a 3575 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑔‘{𝑦𝐵𝜑}) = 𝑧 / 𝑥(𝑔‘{𝑦𝐵𝜑}))
4948eleq1d 2715 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑} ↔ 𝑧 / 𝑥(𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑}))
5045, 47, 49cbvral 3197 . . . . . . . . 9 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑} ↔ ∀𝑧𝐴 𝑧 / 𝑥(𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑})
5144, 50sylib 208 . . . . . . . 8 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑧𝐴 𝑧 / 𝑥(𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑})
52 nfcv 2793 . . . . . . . . . 10 𝑧(𝑔‘{𝑦𝐵𝜑})
5352, 46, 48cbvmpt 4782 . . . . . . . . 9 (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) = (𝑧𝐴𝑧 / 𝑥(𝑔‘{𝑦𝐵𝜑}))
5453fmpt 6421 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑥(𝑔‘{𝑦𝐵𝜑}) ∈ 𝑥𝐴 {𝑦𝐵𝜑} ↔ (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴 𝑥𝐴 {𝑦𝐵𝜑})
5551, 54sylib 208 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴 𝑥𝐴 {𝑦𝐵𝜑})
56 simpl1 1084 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → 𝐴𝑉)
57 simpl2 1085 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card)
58 fex2 7163 . . . . . . 7 (((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴 𝑥𝐴 {𝑦𝐵𝜑} ∧ 𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∈ V)
5955, 56, 57, 58syl3anc 1366 . . . . . 6 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∈ V)
60 ssrab2 3720 . . . . . . . . . . 11 {𝑦𝐵𝜑} ⊆ 𝐵
6160sseli 3632 . . . . . . . . . 10 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
6261ralimi 2981 . . . . . . . . 9 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
6362ad2antll 765 . . . . . . . 8 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵)
64 eqid 2651 . . . . . . . . 9 (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
6564fmpt 6421 . . . . . . . 8 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵 ↔ (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵)
6663, 65sylib 208 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵)
67 nfcv 2793 . . . . . . . . . . 11 𝑦𝐵
6867elrabsf 3507 . . . . . . . . . 10 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} ↔ ((𝑔‘{𝑦𝐵𝜑}) ∈ 𝐵[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
6968simprbi 479 . . . . . . . . 9 ((𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
7069ralimi 2981 . . . . . . . 8 (∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑} → ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
7170ad2antll 765 . . . . . . 7 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)
7266, 71jca 553 . . . . . 6 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
73 feq1 6064 . . . . . . . 8 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (𝑓:𝐴𝐵 ↔ (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵))
74 nfmpt1 4780 . . . . . . . . . 10 𝑥(𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
7574nfeq2 2809 . . . . . . . . 9 𝑥 𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))
76 fvex 6239 . . . . . . . . . . 11 (𝑓𝑥) ∈ V
77 ac6num.1 . . . . . . . . . . 11 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
7876, 77sbcie 3503 . . . . . . . . . 10 ([(𝑓𝑥) / 𝑦]𝜑𝜓)
79 fveq1 6228 . . . . . . . . . . . 12 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (𝑓𝑥) = ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥))
80 fvex 6239 . . . . . . . . . . . . 13 (𝑔‘{𝑦𝐵𝜑}) ∈ V
8164fvmpt2 6330 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ (𝑔‘{𝑦𝐵𝜑}) ∈ V) → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥) = (𝑔‘{𝑦𝐵𝜑}))
8280, 81mpan2 707 . . . . . . . . . . . 12 (𝑥𝐴 → ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑}))‘𝑥) = (𝑔‘{𝑦𝐵𝜑}))
8379, 82sylan9eq 2705 . . . . . . . . . . 11 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → (𝑓𝑥) = (𝑔‘{𝑦𝐵𝜑}))
8483sbceq1d 3473 . . . . . . . . . 10 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → ([(𝑓𝑥) / 𝑦]𝜑[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
8578, 84syl5bbr 274 . . . . . . . . 9 ((𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∧ 𝑥𝐴) → (𝜓[(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
8675, 85ralbida 3011 . . . . . . . 8 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑))
8773, 86anbi12d 747 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓) ↔ ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑)))
8887spcegv 3325 . . . . . 6 ((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})) ∈ V → (((𝑥𝐴 ↦ (𝑔‘{𝑦𝐵𝜑})):𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑔‘{𝑦𝐵𝜑}) / 𝑦]𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
8959, 72, 88sylc 65 . . . . 5 (((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑})) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
9089ex 449 . . . 4 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔 Fn ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑥𝐴 (𝑔‘{𝑦𝐵𝜑}) ∈ {𝑦𝐵𝜑}) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
9141, 90syld 47 . . 3 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ((𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
9291exlimdv 1901 . 2 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → (∃𝑔(𝑔:ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})⟶ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑}) ∧ ∀𝑧 ∈ ran (𝑥𝐴 ↦ {𝑦𝐵𝜑})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
9331, 92mpd 15 1 ((𝐴𝑉 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  [wsbc 3468  csb 3566  wss 3607  c0 3948   cuni 4468   ciun 4552  cmpt 4762  dom cdm 5143  ran crn 5144   Fn wfn 5921  wf 5922  cfv 5926  cardccrd 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-en 7998  df-card 8803
This theorem is referenced by:  ac6  9340  ptcmplem3  21905  poimirlem32  33571
  Copyright terms: Public domain W3C validator