Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6gf Structured version   Visualization version   GIF version

Theorem ac6gf 33809
Description: Axiom of Choice. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ac6gf.1 𝑦𝜓
ac6gf.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6gf ((𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑓   𝑥,𝐵,𝑦,𝑓   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)

Proof of Theorem ac6gf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvrexsv 3310 . . 3 (∃𝑦𝐵 𝜑 ↔ ∃𝑧𝐵 [𝑧 / 𝑦]𝜑)
21ralbii 3106 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑)
3 ac6gf.1 . . . . 5 𝑦𝜓
4 ac6gf.2 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
53, 4sbhypf 3381 . . . 4 (𝑧 = (𝑓𝑥) → ([𝑧 / 𝑦]𝜑𝜓))
65ac6sg 9473 . . 3 (𝐴𝐶 → (∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
76imp 444 . 2 ((𝐴𝐶 ∧ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
82, 7sylan2b 493 1 ((𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wex 1841  wnf 1845  [wsb 2034  wcel 2127  wral 3038  wrex 3039  wf 6033  cfv 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-reg 8650  ax-inf2 8699  ax-ac2 9448
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-om 7219  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-en 8110  df-r1 8788  df-rank 8789  df-card 8926  df-ac 9100
This theorem is referenced by:  indexdom  33811
  Copyright terms: Public domain W3C validator