MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5num Structured version   Visualization version   GIF version

Theorem ac5num 8844
Description: A version of ac5b 9285 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
ac5num (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Distinct variable group:   𝑥,𝑓,𝐴

Proof of Theorem ac5num
Dummy variables 𝑔 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexr 6957 . . . 4 ( 𝐴 ∈ dom card → 𝐴 ∈ V)
2 dfac8b 8839 . . . 4 ( 𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴)
3 dfac8c 8841 . . . 4 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝐴 → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)))
41, 2, 3sylc 65 . . 3 ( 𝐴 ∈ dom card → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥))
54adantr 481 . 2 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥))
6 nelne2 2888 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ¬ ∅ ∈ 𝐴) → 𝑥 ≠ ∅)
76ancoms 469 . . . . . . . . . . 11 ((¬ ∅ ∈ 𝐴𝑥𝐴) → 𝑥 ≠ ∅)
87adantll 749 . . . . . . . . . 10 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
9 pm2.27 42 . . . . . . . . . 10 (𝑥 ≠ ∅ → ((𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → (𝑔𝑥) ∈ 𝑥))
108, 9syl 17 . . . . . . . . 9 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥𝐴) → ((𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → (𝑔𝑥) ∈ 𝑥))
1110ralimdva 2959 . . . . . . . 8 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → (∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥))
1211imp 445 . . . . . . 7 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥)
13 fveq2 6178 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
14 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
1513, 14eleq12d 2693 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑔𝑥) ∈ 𝑥 ↔ (𝑔𝑦) ∈ 𝑦))
1615rspccva 3303 . . . . . . 7 ((∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥𝑦𝐴) → (𝑔𝑦) ∈ 𝑦)
1712, 16sylan 488 . . . . . 6 (((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) ∧ 𝑦𝐴) → (𝑔𝑦) ∈ 𝑦)
18 elunii 4432 . . . . . 6 (((𝑔𝑦) ∈ 𝑦𝑦𝐴) → (𝑔𝑦) ∈ 𝐴)
1917, 18sylancom 700 . . . . 5 (((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) ∧ 𝑦𝐴) → (𝑔𝑦) ∈ 𝐴)
20 eqid 2620 . . . . 5 (𝑦𝐴 ↦ (𝑔𝑦)) = (𝑦𝐴 ↦ (𝑔𝑦))
2119, 20fmptd 6371 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → (𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴)
221ad2antrr 761 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → 𝐴 ∈ V)
23 elex 3207 . . . . 5 ( 𝐴 ∈ dom card → 𝐴 ∈ V)
2423ad2antrr 761 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → 𝐴 ∈ V)
25 fex2 7106 . . . 4 (((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴𝐴 ∈ V ∧ 𝐴 ∈ V) → (𝑦𝐴 ↦ (𝑔𝑦)) ∈ V)
2621, 22, 24, 25syl3anc 1324 . . 3 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → (𝑦𝐴 ↦ (𝑔𝑦)) ∈ V)
27 fveq2 6178 . . . . . . . 8 (𝑦 = 𝑥 → (𝑔𝑦) = (𝑔𝑥))
28 fvex 6188 . . . . . . . 8 (𝑔𝑥) ∈ V
2927, 20, 28fvmpt 6269 . . . . . . 7 (𝑥𝐴 → ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) = (𝑔𝑥))
3029eleq1d 2684 . . . . . 6 (𝑥𝐴 → (((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥 ↔ (𝑔𝑥) ∈ 𝑥))
3130ralbiia 2976 . . . . 5 (∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥 ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥)
3212, 31sylibr 224 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥)
3321, 32jca 554 . . 3 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
34 feq1 6013 . . . . 5 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (𝑓:𝐴 𝐴 ↔ (𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴))
35 fveq1 6177 . . . . . . 7 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (𝑓𝑥) = ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥))
3635eleq1d 2684 . . . . . 6 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → ((𝑓𝑥) ∈ 𝑥 ↔ ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
3736ralbidv 2983 . . . . 5 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥 ↔ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
3834, 37anbi12d 746 . . . 4 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → ((𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) ↔ ((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥)))
3938spcegv 3289 . . 3 ((𝑦𝐴 ↦ (𝑔𝑦)) ∈ V → (((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥)))
4026, 33, 39sylc 65 . 2 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
415, 40exlimddv 1861 1 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wex 1702  wcel 1988  wne 2791  wral 2909  Vcvv 3195  c0 3907   cuni 4427  cmpt 4720   We wwe 5062  dom cdm 5104  wf 5872  cfv 5876  cardccrd 8746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-en 7941  df-card 8750
This theorem is referenced by:  numacn  8857  ac5b  9285  ac6num  9286
  Copyright terms: Public domain W3C validator