MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac3 Structured version   Visualization version   GIF version

Theorem ac3 9244
Description: Axiom of Choice using abbreviations. The logical equivalence to ax-ac 9241 can be established by chaining aceq0 8901 and aceq2 8902. A standard textbook version of AC is derived from this one in dfac2a 8912, and this version of AC is derived from the textbook version in dfac2 8913.

The following sketch will help you understand this version of the axiom. Given any set 𝑥, the axiom says that there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. Using the Axiom of Regularity, we can show that 𝑦 is really a set of ordered pairs, very similar to the ordered pair construction opthreg 8475. The key theorem for this (used in the proof of dfac2 8913) is preleq 8474. With this modified definition of ordered pair, it can be seen that 𝑦 is actually a choice function on the members of 𝑥.

For example, suppose 𝑥 = {{1, 2}, {1, 3}, {2, 3, 4}}. Let us try 𝑦 = {{{1, 2}, 1}, {{1, 3}, 1}, {{2, 3, 4}, 2}}. For the member (of 𝑥) 𝑧 = {1, 2}, the only assignment to 𝑤 and 𝑣 that satisfies the axiom is 𝑤 = 1 and 𝑣 = {{1, 2}, 1}, so there is exactly one 𝑤 as required. We verify the other two members of 𝑥 similarly. Thus, 𝑦 satisfies the axiom. Using our modified ordered pair definition, we can say that 𝑦 corresponds to the choice function {⟨{1, 2}, 1⟩, ⟨{1, 3}, 1⟩, ⟨{2, 3, 4}, 2⟩}. Of course other choices for 𝑦 will also satisfy the axiom, for example 𝑦 = {{{1, 2}, 2}, {{1, 3}, 1}, {{2, 3, 4}, 4}}. What AC tells us is that there exists at least one such 𝑦, but it doesn't tell us which one.

(New usage is discouraged.) (Contributed by NM, 19-Jul-1996.)

Assertion
Ref Expression
ac3 𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem ac3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ac2 9243 . 2 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
2 aceq2 8902 . 2 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
31, 2mpbi 220 1 𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wex 1701  wne 2790  wral 2908  wrex 2909  ∃!wreu 2910  c0 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-ac 9241
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-v 3192  df-dif 3563  df-nul 3898
This theorem is referenced by:  axac2  9248
  Copyright terms: Public domain W3C validator