MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac2 Structured version   Visualization version   GIF version

Theorem ac2 8976
Description: Axiom of Choice equivalent. By using restricted quantifiers, we can express the Axiom of Choice with a single explicit conjunction. (If you want to figure it out, the rewritten equivalent ac3 8977 is easier to understand.) Note: aceq0 8634 shows the logical equivalence to ax-ac 8974. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.)
Assertion
Ref Expression
ac2 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢

Proof of Theorem ac2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ax-ac 8974 . 2 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2 aceq0 8634 . 2 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)))
31, 2mpbir 216 1 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 191  wa 378  wal 1466  wex 1692  wral 2791  wrex 2792  ∃!wreu 2793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-ac 8974
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ral 2796  df-rex 2797  df-reu 2798
This theorem is referenced by:  ac3  8977
  Copyright terms: Public domain W3C validator