![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvn0b | Structured version Visualization version GIF version |
Description: Another characterization of domains, hinted at in abvtriv 18889: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
abvn0b.b | ⊢ 𝐴 = (AbsVal‘𝑅) |
Ref | Expression |
---|---|
abvn0b | ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnnzr 19343 | . . 3 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
2 | abvn0b.b | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
3 | eqid 2651 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | eqid 2651 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2651 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) = (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) | |
6 | eqid 2651 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
7 | domnring 19344 | . . . . 5 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
8 | 3, 6, 4 | domnmuln0 19346 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅)) |
9 | 2, 3, 4, 5, 6, 7, 8 | abvtrivd 18888 | . . . 4 ⊢ (𝑅 ∈ Domn → (𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) ∈ 𝐴) |
10 | ne0i 3954 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅) ↦ if(𝑥 = (0g‘𝑅), 0, 1)) ∈ 𝐴 → 𝐴 ≠ ∅) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑅 ∈ Domn → 𝐴 ≠ ∅) |
12 | 1, 11 | jca 553 | . 2 ⊢ (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
13 | n0 3964 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
14 | neanior 2915 | . . . . . . . . 9 ⊢ ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) ↔ ¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))) | |
15 | an4 882 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) ↔ ((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)))) | |
16 | 2, 3, 4, 6 | abvdom 18886 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅)) |
17 | 16 | 3expib 1287 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
18 | 15, 17 | syl5bi 232 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
19 | 18 | expdimp 452 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦 ≠ (0g‘𝑅) ∧ 𝑧 ≠ (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
20 | 14, 19 | syl5bir 233 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (¬ (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ≠ (0g‘𝑅))) |
21 | 20 | necon4bd 2843 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
22 | 21 | ralrimivva 3000 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
23 | 22 | exlimiv 1898 | . . . . 5 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
24 | 13, 23 | sylbi 207 | . . . 4 ⊢ (𝐴 ≠ ∅ → ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅)))) |
25 | 24 | anim2i 592 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
26 | 3, 6, 4 | isdomn 19342 | . . 3 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → (𝑦 = (0g‘𝑅) ∨ 𝑧 = (0g‘𝑅))))) |
27 | 25, 26 | sylibr 224 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅) → 𝑅 ∈ Domn) |
28 | 12, 27 | impbii 199 | 1 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∅c0 3948 ifcif 4119 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 0cc0 9974 1c1 9975 Basecbs 15904 .rcmulr 15989 0gc0g 16147 AbsValcabv 18864 NzRingcnzr 19305 Domncdomn 19328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-ico 12219 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-mgp 18536 df-ring 18595 df-abv 18865 df-nzr 19306 df-domn 19332 |
This theorem is referenced by: nrgdomn 22522 |
Copyright terms: Public domain | W3C validator |