![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abv1z | Structured version Visualization version GIF version |
Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abv1.p | ⊢ 1 = (1r‘𝑅) |
abv1z.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
abv1z | ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abv0.a | . . . . . . . 8 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 19043 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | eqid 2760 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | abv1.p | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
5 | 3, 4 | ringidcl 18788 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → 1 ∈ (Base‘𝑅)) |
7 | 1, 3 | abvcl 19046 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘ 1 ) ∈ ℝ) |
8 | 6, 7 | mpdan 705 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 1 ) ∈ ℝ) |
9 | 8 | adantr 472 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℝ) |
10 | 9 | recnd 10280 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℂ) |
11 | simpl 474 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 𝐹 ∈ 𝐴) | |
12 | 6 | adantr 472 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ∈ (Base‘𝑅)) |
13 | simpr 479 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ≠ 0 ) | |
14 | abv1z.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
15 | 1, 3, 14 | abvne0 19049 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
16 | 11, 12, 13, 15 | syl3anc 1477 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
17 | 10, 10, 16 | divcan3d 11018 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = (𝐹‘ 1 )) |
18 | 2 | adantr 472 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 𝑅 ∈ Ring) |
19 | eqid 2760 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
20 | 3, 19, 4 | ringlidm 18791 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
21 | 18, 12, 20 | syl2anc 696 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
22 | 21 | fveq2d 6357 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = (𝐹‘ 1 )) |
23 | 1, 3, 19 | abvmul 19051 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
24 | 11, 12, 12, 23 | syl3anc 1477 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
25 | 22, 24 | eqtr3d 2796 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
26 | 25 | oveq1d 6829 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 ))) |
27 | 10, 16 | dividd 11011 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = 1) |
28 | 26, 27 | eqtr3d 2796 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = 1) |
29 | 17, 28 | eqtr3d 2796 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ‘cfv 6049 (class class class)co 6814 ℝcr 10147 0cc0 10148 1c1 10149 · cmul 10153 / cdiv 10896 Basecbs 16079 .rcmulr 16164 0gc0g 16322 1rcur 18721 Ringcrg 18767 AbsValcabv 19038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-ico 12394 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-plusg 16176 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mgp 18710 df-ur 18722 df-ring 18769 df-abv 19039 |
This theorem is referenced by: abv1 19055 abvneg 19056 nm1 22692 qabvle 25534 qabvexp 25535 ostthlem2 25537 ostth3 25547 ostth 25548 |
Copyright terms: Public domain | W3C validator |