![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | 1 | ss2abi 3707 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | abid2 2774 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
4 | 2, 3 | sseqtri 3670 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 {cab 2637 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-in 3614 df-ss 3621 |
This theorem is referenced by: ssab2 3719 intab 4539 opabss 4747 relopabiALT 5279 exse2 7147 opiota 7273 tfrlem8 7525 fiprc 8080 fival 8359 hartogslem1 8488 tz9.12lem1 8688 rankuni 8764 scott0 8787 r0weon 8873 alephval3 8971 aceq3lem 8981 dfac5lem4 8987 dfac2 8991 cff 9108 cfsuc 9117 cff1 9118 cflim2 9123 cfss 9125 axdc3lem 9310 axdclem 9379 gruina 9678 nqpr 9874 infcvgaux1i 14633 4sqlem1 15699 sscpwex 16522 symgval 17845 cssval 20074 topnex 20848 islocfin 21368 hauspwpwf1 21838 itg2lcl 23539 2sqlem7 25194 isismt 25474 nmcexi 29013 opabssi 29551 dispcmp 30054 cnre2csqima 30085 mppspstlem 31594 scutf 32044 colinearex 32292 itg2addnclem 33591 itg2addnc 33594 eldiophb 37637 |
Copyright terms: Public domain | W3C validator |