![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absproddvds | Structured version Visualization version GIF version |
Description: The absolute value of the product of the elements of a finite subset of the integers is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020.) |
Ref | Expression |
---|---|
absproddvds.s | ⊢ (𝜑 → 𝑍 ⊆ ℤ) |
absproddvds.f | ⊢ (𝜑 → 𝑍 ∈ Fin) |
absproddvds.p | ⊢ 𝑃 = (abs‘∏𝑧 ∈ 𝑍 𝑧) |
Ref | Expression |
---|---|
absproddvds | ⊢ (𝜑 → ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absproddvds.f | . . . 4 ⊢ (𝜑 → 𝑍 ∈ Fin) | |
2 | absproddvds.s | . . . 4 ⊢ (𝜑 → 𝑍 ⊆ ℤ) | |
3 | 1, 2 | fproddvdsd 15106 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ 𝑍 𝑚 ∥ ∏𝑧 ∈ 𝑍 𝑧) |
4 | 2 | sselda 3636 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ ℤ) |
5 | 2 | sselda 3636 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → 𝑧 ∈ ℤ) |
6 | 1, 5 | fprodzcl 14728 | . . . . . . 7 ⊢ (𝜑 → ∏𝑧 ∈ 𝑍 𝑧 ∈ ℤ) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∏𝑧 ∈ 𝑍 𝑧 ∈ ℤ) |
8 | dvdsabsb 15048 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ∧ ∏𝑧 ∈ 𝑍 𝑧 ∈ ℤ) → (𝑚 ∥ ∏𝑧 ∈ 𝑍 𝑧 ↔ 𝑚 ∥ (abs‘∏𝑧 ∈ 𝑍 𝑧))) | |
9 | 4, 7, 8 | syl2anc 694 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑚 ∥ ∏𝑧 ∈ 𝑍 𝑧 ↔ 𝑚 ∥ (abs‘∏𝑧 ∈ 𝑍 𝑧))) |
10 | 9 | biimpd 219 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑚 ∥ ∏𝑧 ∈ 𝑍 𝑧 → 𝑚 ∥ (abs‘∏𝑧 ∈ 𝑍 𝑧))) |
11 | 10 | ralimdva 2991 | . . 3 ⊢ (𝜑 → (∀𝑚 ∈ 𝑍 𝑚 ∥ ∏𝑧 ∈ 𝑍 𝑧 → ∀𝑚 ∈ 𝑍 𝑚 ∥ (abs‘∏𝑧 ∈ 𝑍 𝑧))) |
12 | 3, 11 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ 𝑍 𝑚 ∥ (abs‘∏𝑧 ∈ 𝑍 𝑧)) |
13 | absproddvds.p | . . . 4 ⊢ 𝑃 = (abs‘∏𝑧 ∈ 𝑍 𝑧) | |
14 | 13 | breq2i 4693 | . . 3 ⊢ (𝑚 ∥ 𝑃 ↔ 𝑚 ∥ (abs‘∏𝑧 ∈ 𝑍 𝑧)) |
15 | 14 | ralbii 3009 | . 2 ⊢ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑃 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ (abs‘∏𝑧 ∈ 𝑍 𝑧)) |
16 | 12, 15 | sylibr 224 | 1 ⊢ (𝜑 → ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 class class class wbr 4685 ‘cfv 5926 Fincfn 7997 ℤcz 11415 abscabs 14018 ∏cprod 14679 ∥ cdvds 15027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-prod 14680 df-dvds 15028 |
This theorem is referenced by: fissn0dvds 15379 |
Copyright terms: Public domain | W3C validator |