![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absf | Structured version Visualization version GIF version |
Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
absf | ⊢ abs:ℂ⟶ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-abs 14020 | . 2 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
2 | absval 14022 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) = (√‘(𝑥 · (∗‘𝑥)))) | |
3 | abscl 14062 | . . 3 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
4 | 2, 3 | eqeltrrd 2731 | . 2 ⊢ (𝑥 ∈ ℂ → (√‘(𝑥 · (∗‘𝑥))) ∈ ℝ) |
5 | 1, 4 | fmpti 6423 | 1 ⊢ abs:ℂ⟶ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℝcr 9973 · cmul 9979 ∗ccj 13880 √csqrt 14017 abscabs 14018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 |
This theorem is referenced by: lo1o1 14307 lo1o12 14308 abscn2 14373 climabs 14378 rlimabs 14383 cnfldds 19804 cnfldfun 19806 cnfldfunALT 19807 absabv 19851 cnmet 22622 cnbl0 22624 cnblcld 22625 cnfldms 22626 cnfldnm 22629 abscncf 22751 cnfldcusp 23199 ovolfsf 23286 ovolctb 23304 iblabslem 23639 iblabs 23640 bddmulibl 23650 dvlip2 23803 c1liplem1 23804 pserulm 24221 psercn2 24222 psercnlem2 24223 psercnlem1 24224 psercn 24225 pserdvlem1 24226 pserdvlem2 24227 pserdv 24228 pserdv2 24229 abelth 24240 efif1olem3 24335 efif1olem4 24336 efifo 24338 eff1olem 24339 logcn 24438 efopnlem1 24447 logtayl 24451 cnnv 27660 cnnvg 27661 cnnvs 27663 cnnvnm 27664 cncph 27802 mblfinlem2 33577 ftc1anclem1 33615 ftc1anclem2 33616 ftc1anclem3 33617 ftc1anclem4 33618 ftc1anclem5 33619 ftc1anclem6 33620 ftc1anclem7 33621 ftc1anclem8 33622 ftc1anc 33623 extoimad 38781 imo72b2lem0 38782 imo72b2lem2 38784 imo72b2lem1 38788 imo72b2 38792 sblpnf 38826 binomcxplemdvbinom 38869 binomcxplemcvg 38870 binomcxplemdvsum 38871 binomcxplemnotnn0 38872 absfun 39879 cncficcgt0 40419 fourierdlem42 40684 hoicvr 41083 ovolval2lem 41178 ovolval3 41182 |
Copyright terms: Public domain | W3C validator |