MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscxpbnd Structured version   Visualization version   GIF version

Theorem abscxpbnd 24539
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
abscxpbnd.1 (𝜑𝐴 ∈ ℂ)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
abscxpbnd.3 (𝜑 → 0 ≤ (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
abscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem abscxpbnd
StepHypRef Expression
1 1le1 10693 . . . . 5 1 ≤ 1
21a1i 11 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 1 ≤ 1)
3 oveq12 6699 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
43adantll 750 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
5 0cn 10070 . . . . . . . 8 0 ∈ ℂ
6 cxp0 24461 . . . . . . . 8 (0 ∈ ℂ → (0↑𝑐0) = 1)
75, 6ax-mp 5 . . . . . . 7 (0↑𝑐0) = 1
84, 7syl6eq 2701 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = 1)
98fveq2d 6233 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘1))
10 abs1 14081 . . . . 5 (abs‘1) = 1
119, 10syl6eq 2701 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = 1)
12 fveq2 6229 . . . . . . . . 9 (𝐵 = 0 → (ℜ‘𝐵) = (ℜ‘0))
13 re0 13936 . . . . . . . . 9 (ℜ‘0) = 0
1412, 13syl6eq 2701 . . . . . . . 8 (𝐵 = 0 → (ℜ‘𝐵) = 0)
1514oveq2d 6706 . . . . . . 7 (𝐵 = 0 → (𝑀𝑐(ℜ‘𝐵)) = (𝑀𝑐0))
16 abscxpbnd.4 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
1716recnd 10106 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
1817cxp0d 24496 . . . . . . . 8 (𝜑 → (𝑀𝑐0) = 1)
1918adantr 480 . . . . . . 7 ((𝜑𝐴 = 0) → (𝑀𝑐0) = 1)
2015, 19sylan9eqr 2707 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝑀𝑐(ℜ‘𝐵)) = 1)
21 simpr 476 . . . . . . . . . . 11 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0)
2221abs00bd 14075 . . . . . . . . . 10 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
2322oveq1d 6705 . . . . . . . . 9 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = (0 · π))
24 picn 24256 . . . . . . . . . 10 π ∈ ℂ
2524mul02i 10263 . . . . . . . . 9 (0 · π) = 0
2623, 25syl6eq 2701 . . . . . . . 8 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = 0)
2726fveq2d 6233 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = (exp‘0))
28 ef0 14865 . . . . . . 7 (exp‘0) = 1
2927, 28syl6eq 2701 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = 1)
3020, 29oveq12d 6708 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = (1 · 1))
31 1t1e1 11213 . . . . 5 (1 · 1) = 1
3230, 31syl6eq 2701 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = 1)
332, 11, 323brtr4d 4717 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
34 simplr 807 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0)
3534oveq1d 6705 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = (0↑𝑐𝐵))
36 abscxpbnd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3736adantr 480 . . . . . . 7 ((𝜑𝐴 = 0) → 𝐵 ∈ ℂ)
38 0cxp 24457 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
3937, 38sylan 487 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
4035, 39eqtrd 2685 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = 0)
4140abs00bd 14075 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = 0)
42 0red 10079 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
43 abscxpbnd.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4443abscld 14219 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℝ)
4543absge0d 14227 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐴))
46 abscxpbnd.5 . . . . . . . 8 (𝜑 → (abs‘𝐴) ≤ 𝑀)
4742, 44, 16, 45, 46letrd 10232 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
4836recld 13978 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
4916, 47, 48recxpcld 24514 . . . . . 6 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5049ad2antrr 762 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5136abscld 14219 . . . . . . . 8 (𝜑 → (abs‘𝐵) ∈ ℝ)
5251ad2antrr 762 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘𝐵) ∈ ℝ)
53 pire 24255 . . . . . . 7 π ∈ ℝ
54 remulcl 10059 . . . . . . 7 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
5552, 53, 54sylancl 695 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
5655reefcld 14862 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
5716, 47, 48cxpge0d 24515 . . . . . 6 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5857ad2antrr 762 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5955rpefcld 14879 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ+)
6059rpge0d 11914 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (exp‘((abs‘𝐵) · π)))
6150, 56, 58, 60mulge0d 10642 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6241, 61eqbrtrd 4707 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6333, 62pm2.61dane 2910 . 2 ((𝜑𝐴 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6443adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℂ)
65 simpr 476 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ≠ 0)
6636adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐵 ∈ ℂ)
6764, 65, 66cxpefd 24503 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
6867fveq2d 6233 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
69 logcl 24360 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7043, 69sylan 487 . . . . . 6 ((𝜑𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7166, 70mulcld 10098 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐵 · (log‘𝐴)) ∈ ℂ)
72 absef 14971 . . . . 5 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7371, 72syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7466recld 13978 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℝ)
7570recld 13978 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ)
7674, 75remulcld 10108 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
7776recnd 10106 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
7866imcld 13979 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℝ)
7970imcld 13979 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
8079renegcld 10495 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℝ)
8178, 80remulcld 10108 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
8281recnd 10106 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
83 efadd 14868 . . . . . 6 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8477, 82, 83syl2anc 694 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8578, 79remulcld 10108 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
8685recnd 10106 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
8777, 86negsubd 10436 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
8878recnd 10106 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℂ)
8979recnd 10106 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9088, 89mulneg2d 10522 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
9190oveq2d 6706 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9266, 70remuld 14002 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9387, 91, 923eqtr4d 2695 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
9493fveq2d 6233 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
95 relog 24388 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9643, 95sylan 487 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9796oveq2d 6706 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
9897fveq2d 6233 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
9944recnd 10106 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℂ)
10099adantr 480 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
10143abs00ad 14074 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
102101necon3bid 2867 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
103102biimpar 501 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
10474recnd 10106 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℂ)
105100, 103, 104cxpefd 24503 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
10698, 105eqtr4d 2688 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
107106oveq1d 6705 . . . . 5 ((𝜑𝐴 ≠ 0) → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10884, 94, 1073eqtr3d 2693 . . . 4 ((𝜑𝐴 ≠ 0) → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10968, 73, 1083eqtrd 2689 . . 3 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
11064abscld 14219 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
11164absge0d 14227 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
112110, 111, 74recxpcld 24514 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
11381reefcld 14862 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
114112, 113remulcld 10108 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11549adantr 480 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
116115, 113remulcld 10108 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11751, 53, 54sylancl 695 . . . . . . 7 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
118117reefcld 14862 . . . . . 6 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
119118adantr 480 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
120115, 119remulcld 10108 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
12181rpefcld 14879 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
122121rpge0d 11914 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
12316adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝑀 ∈ ℝ)
124 abscxpbnd.3 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘𝐵))
125124adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (ℜ‘𝐵))
12646adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≤ 𝑀)
127110, 111, 123, 74, 125, 126cxple2ad 24516 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
128112, 115, 113, 122, 127lemul1ad 11001 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
12957adantr 480 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
13088abscld 14219 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
13180recnd 10106 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℂ)
132131abscld 14219 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
133130, 132remulcld 10108 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
134117adantr 480 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
13581leabsd 14197 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
13688, 131absmuld 14237 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
137135, 136breqtrd 4711 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
13866abscld 14219 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐵) ∈ ℝ)
139138, 132remulcld 10108 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
140131absge0d 14227 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
141 absimle 14093 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
14266, 141syl 17 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
143130, 138, 132, 140, 142lemul1ad 11001 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
14453a1i 11 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → π ∈ ℝ)
14566absge0d 14227 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐵))
14689absnegd 14232 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
147 logimcl 24361 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
14843, 147sylan 487 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
149148simpld 474 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
15053renegcli 10380 . . . . . . . . . . . . 13 -π ∈ ℝ
151 ltle 10164 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
152150, 79, 151sylancr 696 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
153149, 152mpd 15 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
154148simprd 478 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
155 absle 14099 . . . . . . . . . . . 12 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
15679, 53, 155sylancl 695 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
157153, 154, 156mpbir2and 977 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
158146, 157eqbrtrd 4707 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
159132, 144, 138, 145, 158lemul2ad 11002 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
160133, 139, 134, 143, 159letrd 10232 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
16181, 133, 134, 137, 160letrd 10232 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
162 efle 14892 . . . . . . 7 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
16381, 134, 162syl2anc 694 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
164161, 163mpbid 222 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
165113, 119, 115, 129, 164lemul2ad 11002 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
166114, 116, 120, 128, 165letrd 10232 . . 3 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
167109, 166eqbrtrd 4707 . 2 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
16863, 167pm2.61dane 2910 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305  cre 13881  cim 13882  abscabs 14018  expce 14836  πcpi 14841  logclog 24346  𝑐ccxp 24347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349
This theorem is referenced by:  o1cxp  24746
  Copyright terms: Public domain W3C validator