![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abscl | Structured version Visualization version GIF version |
Description: Real closure of absolute value. (Contributed by NM, 3-Oct-1999.) |
Ref | Expression |
---|---|
abscl | ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absval 14197 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
2 | cjmulrcl 14103 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) | |
3 | cjmulge0 14105 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴))) | |
4 | resqrtcl 14213 | . . 3 ⊢ (((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))) → (√‘(𝐴 · (∗‘𝐴))) ∈ ℝ) | |
5 | 2, 3, 4 | syl2anc 696 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) ∈ ℝ) |
6 | 1, 5 | eqeltrd 2839 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 ℝcr 10147 0cc0 10148 · cmul 10153 ≤ cle 10287 ∗ccj 14055 √csqrt 14192 abscabs 14193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 |
This theorem is referenced by: absreim 14252 absdiv 14254 leabs 14258 absexp 14263 absexpz 14264 sqabs 14266 absimle 14268 abslt 14273 absle 14274 abssubne0 14275 lenegsq 14279 releabs 14280 recval 14281 absidm 14282 absgt0 14283 abstri 14289 abs2dif 14291 abs2difabs 14293 abs1m 14294 absf 14296 abs3lem 14297 abslem2 14298 absrdbnd 14300 caubnd2 14316 caubnd 14317 sqreulem 14318 sqreu 14319 abscli 14353 abscld 14394 mulcn2 14545 seqabs 14765 cvgcmpce 14769 divrcnv 14803 geomulcvg 14826 efcllem 15027 cnbl0 22798 cnblcld 22799 cncmet 23339 iblmulc2 23816 bddmulibl 23824 dveflem 23961 abelth 24414 efiarg 24573 argregt0 24576 argimgt0 24578 tanarg 24585 logtayllem 24625 bndatandm 24876 atantayl 24884 efrlim 24916 ftalem2 25020 lgslem3 25244 smcnlem 27882 cncph 28004 nmophmi 29220 bdophmi 29221 zrhnm 30343 absfico 39927 |
Copyright terms: Public domain | W3C validator |