MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absabv Structured version   Visualization version   GIF version

Theorem absabv 20025
Description: The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.)
Assertion
Ref Expression
absabv abs ∈ (AbsVal‘ℂfld)

Proof of Theorem absabv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2761 . . 3 (⊤ → (AbsVal‘ℂfld) = (AbsVal‘ℂfld))
2 cnfldbas 19972 . . . 4 ℂ = (Base‘ℂfld)
32a1i 11 . . 3 (⊤ → ℂ = (Base‘ℂfld))
4 cnfldadd 19973 . . . 4 + = (+g‘ℂfld)
54a1i 11 . . 3 (⊤ → + = (+g‘ℂfld))
6 cnfldmul 19974 . . . 4 · = (.r‘ℂfld)
76a1i 11 . . 3 (⊤ → · = (.r‘ℂfld))
8 cnfld0 19992 . . . 4 0 = (0g‘ℂfld)
98a1i 11 . . 3 (⊤ → 0 = (0g‘ℂfld))
10 cnring 19990 . . . 4 fld ∈ Ring
1110a1i 11 . . 3 (⊤ → ℂfld ∈ Ring)
12 absf 14296 . . . 4 abs:ℂ⟶ℝ
1312a1i 11 . . 3 (⊤ → abs:ℂ⟶ℝ)
14 abs0 14244 . . . 4 (abs‘0) = 0
1514a1i 11 . . 3 (⊤ → (abs‘0) = 0)
16 absgt0 14283 . . . . 5 (𝑥 ∈ ℂ → (𝑥 ≠ 0 ↔ 0 < (abs‘𝑥)))
1716biimpa 502 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥))
18173adant1 1125 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥))
19 absmul 14253 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
2019ad2ant2r 800 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
21203adant1 1125 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
22 abstri 14289 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦)))
2322ad2ant2r 800 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦)))
24233adant1 1125 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦)))
251, 3, 5, 7, 9, 11, 13, 15, 18, 21, 24isabvd 19042 . 2 (⊤ → abs ∈ (AbsVal‘ℂfld))
2625trud 1642 1 abs ∈ (AbsVal‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wtru 1633  wcel 2139  wne 2932   class class class wbr 4804  wf 6045  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  abscabs 14193  Basecbs 16079  +gcplusg 16163  .rcmulr 16164  0gc0g 16322  Ringcrg 18767  AbsValcabv 19038  fldccnfld 19968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-ico 12394  df-fz 12540  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-cmn 18415  df-mgp 18710  df-ring 18769  df-cring 18770  df-abv 19039  df-cnfld 19969
This theorem is referenced by:  cnnrg  22805  cnindmet  23182  qabsabv  25538
  Copyright terms: Public domain W3C validator