![]() |
Mathbox for Paul Chapman |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abs2sqlt | Structured version Visualization version GIF version |
Description: The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
Ref | Expression |
---|---|
abs2sqlt | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6332 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (abs‘𝐴) = (abs‘if(𝐴 ∈ ℂ, 𝐴, 0))) | |
2 | 1 | breq1d 4796 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((abs‘𝐴) < (abs‘𝐵) ↔ (abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) < (abs‘𝐵))) |
3 | 1 | oveq1d 6808 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((abs‘𝐴)↑2) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2)) |
4 | 3 | breq1d 4796 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((abs‘𝐴)↑2) < ((abs‘𝐵)↑2) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) < ((abs‘𝐵)↑2))) |
5 | 2, 4 | bibi12d 334 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2)) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) < (abs‘𝐵) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) < ((abs‘𝐵)↑2)))) |
6 | fveq2 6332 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (abs‘𝐵) = (abs‘if(𝐵 ∈ ℂ, 𝐵, 0))) | |
7 | 6 | breq2d 4798 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) < (abs‘𝐵) ↔ (abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) < (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)))) |
8 | oveq1 6800 | . . . . 5 ⊢ ((abs‘𝐵) = (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)) → ((abs‘𝐵)↑2) = ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2)) | |
9 | 8 | breq2d 4798 | . . . 4 ⊢ ((abs‘𝐵) = (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)) → (((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) < ((abs‘𝐵)↑2) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) < ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2))) |
10 | 6, 9 | syl 17 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) < ((abs‘𝐵)↑2) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) < ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2))) |
11 | 7, 10 | bibi12d 334 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) < (abs‘𝐵) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) < ((abs‘𝐵)↑2)) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) < (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) < ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2)))) |
12 | 0cn 10234 | . . . 4 ⊢ 0 ∈ ℂ | |
13 | 12 | elimel 4289 | . . 3 ⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ |
14 | 12 | elimel 4289 | . . 3 ⊢ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ |
15 | 13, 14 | abs2sqlti 31911 | . 2 ⊢ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) < (abs‘if(𝐵 ∈ ℂ, 𝐵, 0)) ↔ ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0))↑2) < ((abs‘if(𝐵 ∈ ℂ, 𝐵, 0))↑2)) |
16 | 5, 11, 15 | dedth2h 4279 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ifcif 4225 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 0cc0 10138 < clt 10276 2c2 11272 ↑cexp 13067 abscabs 14182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |