Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1m Structured version   Visualization version   GIF version

Theorem abs1m 14274
 Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
abs1m (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem abs1m
StepHypRef Expression
1 fveq2 6352 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
2 abs0 14224 . . . . . 6 (abs‘0) = 0
31, 2syl6eq 2810 . . . . 5 (𝐴 = 0 → (abs‘𝐴) = 0)
4 oveq2 6821 . . . . 5 (𝐴 = 0 → (𝑥 · 𝐴) = (𝑥 · 0))
53, 4eqeq12d 2775 . . . 4 (𝐴 = 0 → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ 0 = (𝑥 · 0)))
65anbi2d 742 . . 3 (𝐴 = 0 → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
76rexbidv 3190 . 2 (𝐴 = 0 → (∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
8 simpl 474 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
98cjcld 14135 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
10 abscl 14217 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1110adantr 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
1211recnd 10260 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
13 abs00 14228 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
1413necon3bid 2976 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1514biimpar 503 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
169, 12, 15divcld 10993 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ)
17 absdiv 14234 . . . . 5 (((∗‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
189, 12, 15, 17syl3anc 1477 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
19 abscj 14218 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
2019adantr 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(∗‘𝐴)) = (abs‘𝐴))
21 absidm 14262 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2221adantr 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2320, 22oveq12d 6831 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))) = ((abs‘𝐴) / (abs‘𝐴)))
2412, 15dividd 10991 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
2518, 23, 243eqtrd 2798 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1)
268, 9, 12, 15divassd 11028 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
2712sqvald 13199 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
28 absvalsq 14219 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
2928adantr 472 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
3027, 29eqtr3d 2796 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) · (abs‘𝐴)) = (𝐴 · (∗‘𝐴)))
3112, 12, 15, 30mvllmuld 11049 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)))
3216, 8mulcomd 10253 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘𝐴) / (abs‘𝐴)) · 𝐴) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
3326, 31, 323eqtr4d 2804 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
34 fveq2 6352 . . . . . 6 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (abs‘𝑥) = (abs‘((∗‘𝐴) / (abs‘𝐴))))
3534eqeq1d 2762 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝑥) = 1 ↔ (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1))
36 oveq1 6820 . . . . . 6 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (𝑥 · 𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
3736eqeq2d 2770 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴)))
3835, 37anbi12d 749 . . . 4 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))))
3938rspcev 3449 . . 3 ((((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ ∧ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
4016, 25, 33, 39syl12anc 1475 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
41 ax-icn 10187 . . . 4 i ∈ ℂ
42 absi 14225 . . . . 5 (abs‘i) = 1
43 it0e0 11446 . . . . . 6 (i · 0) = 0
4443eqcomi 2769 . . . . 5 0 = (i · 0)
4542, 44pm3.2i 470 . . . 4 ((abs‘i) = 1 ∧ 0 = (i · 0))
46 fveq2 6352 . . . . . . 7 (𝑥 = i → (abs‘𝑥) = (abs‘i))
4746eqeq1d 2762 . . . . . 6 (𝑥 = i → ((abs‘𝑥) = 1 ↔ (abs‘i) = 1))
48 oveq1 6820 . . . . . . 7 (𝑥 = i → (𝑥 · 0) = (i · 0))
4948eqeq2d 2770 . . . . . 6 (𝑥 = i → (0 = (𝑥 · 0) ↔ 0 = (i · 0)))
5047, 49anbi12d 749 . . . . 5 (𝑥 = i → (((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)) ↔ ((abs‘i) = 1 ∧ 0 = (i · 0))))
5150rspcev 3449 . . . 4 ((i ∈ ℂ ∧ ((abs‘i) = 1 ∧ 0 = (i · 0))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
5241, 45, 51mp2an 710 . . 3 𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))
5352a1i 11 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
547, 40, 53pm2.61ne 3017 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129  ici 10130   · cmul 10133   / cdiv 10876  2c2 11262  ↑cexp 13054  ∗ccj 14035  abscabs 14173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator