![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abs00bd | Structured version Visualization version GIF version |
Description: If a complex number is zero, its absolute value is zero. Converse of abs00d 14392. One-way deduction form of abs00 14236. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
abs00bd.1 | ⊢ (𝜑 → 𝐴 = 0) |
Ref | Expression |
---|---|
abs00bd | ⊢ (𝜑 → (abs‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abs00bd.1 | . 2 ⊢ (𝜑 → 𝐴 = 0) | |
2 | 0cn 10233 | . . . 4 ⊢ 0 ∈ ℂ | |
3 | 1, 2 | syl6eqel 2857 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
4 | 3 | abs00ad 14237 | . 2 ⊢ (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
5 | 1, 4 | mpbird 247 | 1 ⊢ (𝜑 → (abs‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ‘cfv 6031 ℂcc 10135 0cc0 10137 abscabs 14181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 |
This theorem is referenced by: lcmgcd 15527 blcvx 22820 mulc1cncf 22927 rrxdstprj1 23410 dvlip 23975 c1lip1 23979 dveq0 23982 dv11cn 23983 ftc1lem5 24022 dvradcnv 24394 abelthlem2 24405 abelthlem8 24412 abscxp2 24659 cxpcn3lem 24708 abscxpbnd 24714 chordthmlem3 24781 rlimcnp 24912 dchrabs2 25207 dchrisumlem3 25400 pntrsumbnd2 25476 siii 28042 nmbdfnlbi 29242 nmcfnlbi 29245 knoppndvlem13 32846 poimirlem29 33764 ftc1cnnc 33809 pellexlem6 37917 congabseq 38060 dvconstbi 39052 binomcxplemnn0 39067 dvdivbd 40650 dvbdfbdioolem2 40656 ioodvbdlimc1lem1 40658 |
Copyright terms: Public domain | W3C validator |