Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexexOLD Structured version   Visualization version   GIF version

Theorem abrexexOLD 7308
 Description: Obsolete proof of abrexex 7307 as of 8-Dec-2021. (Contributed by NM, 16-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
abrexex.1 𝐴 ∈ V
Assertion
Ref Expression
abrexexOLD {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem abrexexOLD
StepHypRef Expression
1 eqid 2760 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21rnmpt 5526 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
3 abrexex.1 . . . 4 𝐴 ∈ V
43mptex 6651 . . 3 (𝑥𝐴𝐵) ∈ V
54rnex 7266 . 2 ran (𝑥𝐴𝐵) ∈ V
62, 5eqeltrri 2836 1 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1632   ∈ wcel 2139  {cab 2746  ∃wrex 3051  Vcvv 3340   ↦ cmpt 4881  ran crn 5267 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator