![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abrexex | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7287. See also abrexex2 7295. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
abrexex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
abrexex | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | abrexexg 7287 | . 2 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 {cab 2757 ∃wrex 3062 Vcvv 3351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 |
This theorem is referenced by: ab2rexex 7306 kmlem10 9183 shftfval 14018 dvdsrval 18853 cmpsublem 21423 cmpsub 21424 ptrescn 21663 heibor1lem 33940 pointsetN 35549 eldiophb 37846 |
Copyright terms: Public domain | W3C validator |