Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexdomjm Structured version   Visualization version   GIF version

Theorem abrexdomjm 29471
Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
abrexdomjm.1 (𝑦𝐴 → ∃*𝑥𝜑)
Assertion
Ref Expression
abrexdomjm (𝐴𝑉 → {𝑥 ∣ ∃𝑦𝐴 𝜑} ≼ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem abrexdomjm
StepHypRef Expression
1 df-rex 2947 . . . 4 (∃𝑦𝐴 𝜑 ↔ ∃𝑦(𝑦𝐴𝜑))
21abbii 2768 . . 3 {𝑥 ∣ ∃𝑦𝐴 𝜑} = {𝑥 ∣ ∃𝑦(𝑦𝐴𝜑)}
3 rnopab 5402 . . 3 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} = {𝑥 ∣ ∃𝑦(𝑦𝐴𝜑)}
42, 3eqtr4i 2676 . 2 {𝑥 ∣ ∃𝑦𝐴 𝜑} = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)}
5 dmopabss 5368 . . . . 5 dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴
6 ssexg 4837 . . . . 5 ((dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴𝐴𝑉) → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∈ V)
75, 6mpan 706 . . . 4 (𝐴𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∈ V)
8 funopab 5961 . . . . . . 7 (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ↔ ∀𝑦∃*𝑥(𝑦𝐴𝜑))
9 abrexdomjm.1 . . . . . . . 8 (𝑦𝐴 → ∃*𝑥𝜑)
10 moanimv 2560 . . . . . . . 8 (∃*𝑥(𝑦𝐴𝜑) ↔ (𝑦𝐴 → ∃*𝑥𝜑))
119, 10mpbir 221 . . . . . . 7 ∃*𝑥(𝑦𝐴𝜑)
128, 11mpgbir 1766 . . . . . 6 Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)}
1312a1i 11 . . . . 5 (𝐴𝑉 → Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
14 funfn 5956 . . . . 5 (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ↔ {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
1513, 14sylib 208 . . . 4 (𝐴𝑉 → {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
16 fnrndomg 9396 . . . 4 (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∈ V → ({⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)}))
177, 15, 16sylc 65 . . 3 (𝐴𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
18 ssdomg 8043 . . . 4 (𝐴𝑉 → (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴))
195, 18mpi 20 . . 3 (𝐴𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴)
20 domtr 8050 . . 3 ((ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∧ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴) → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴)
2117, 19, 20syl2anc 694 . 2 (𝐴𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴)
224, 21syl5eqbr 4720 1 (𝐴𝑉 → {𝑥 ∣ ∃𝑦𝐴 𝜑} ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wex 1744  wcel 2030  ∃*wmo 2499  {cab 2637  wrex 2942  Vcvv 3231  wss 3607   class class class wbr 4685  {copab 4745  dom cdm 5143  ran crn 5144  Fun wfun 5920   Fn wfn 5921  cdom 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-ac2 9323
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-card 8803  df-acn 8806  df-ac 8977
This theorem is referenced by:  abrexdom2jm  29472
  Copyright terms: Public domain W3C validator