MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub23 Structured version   Visualization version   GIF version

Theorem ablsubsub23 18437
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
ablsubsub23.v 𝑉 = (Base‘𝐺)
ablsubsub23.m = (-g𝐺)
Assertion
Ref Expression
ablsubsub23 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))

Proof of Theorem ablsubsub23
StepHypRef Expression
1 simpl 468 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐺 ∈ Abel)
2 simpr3 1237 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
3 simpr2 1235 . . . 4 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
4 ablsubsub23.v . . . . 5 𝑉 = (Base‘𝐺)
5 eqid 2771 . . . . 5 (+g𝐺) = (+g𝐺)
64, 5ablcom 18417 . . . 4 ((𝐺 ∈ Abel ∧ 𝐶𝑉𝐵𝑉) → (𝐶(+g𝐺)𝐵) = (𝐵(+g𝐺)𝐶))
71, 2, 3, 6syl3anc 1476 . . 3 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐶(+g𝐺)𝐵) = (𝐵(+g𝐺)𝐶))
87eqeq1d 2773 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐶(+g𝐺)𝐵) = 𝐴 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
9 ablgrp 18405 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
10 ablsubsub23.m . . . 4 = (-g𝐺)
114, 5, 10grpsubadd 17711 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐶(+g𝐺)𝐵) = 𝐴))
129, 11sylan 569 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐶(+g𝐺)𝐵) = 𝐴))
13 3ancomb 1085 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ (𝐴𝑉𝐶𝑉𝐵𝑉))
1413biimpi 206 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐶𝑉𝐵𝑉))
154, 5, 10grpsubadd 17711 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑉𝐶𝑉𝐵𝑉)) → ((𝐴 𝐶) = 𝐵 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
169, 14, 15syl2an 583 . 2 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐶) = 𝐵 ↔ (𝐵(+g𝐺)𝐶) = 𝐴))
178, 12, 163bitr4d 300 1 ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  Grpcgrp 17630  -gcsg 17632  Abelcabl 18401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-cmn 18402  df-abl 18403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator