![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablsub2inv | Structured version Visualization version GIF version |
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.) |
Ref | Expression |
---|---|
ablsub2inv.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsub2inv.m | ⊢ − = (-g‘𝐺) |
ablsub2inv.n | ⊢ 𝑁 = (invg‘𝐺) |
ablsub2inv.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsub2inv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablsub2inv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ablsub2inv | ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsub2inv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2760 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | ablsub2inv.m | . . 3 ⊢ − = (-g‘𝐺) | |
4 | ablsub2inv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
5 | ablsub2inv.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
6 | ablgrp 18418 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | ablsub2inv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 1, 4 | grpinvcl 17688 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
10 | 7, 8, 9 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
11 | ablsub2inv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | 1, 2, 3, 4, 7, 10, 11 | grpsubinv 17709 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = ((𝑁‘𝑋)(+g‘𝐺)𝑌)) |
13 | 1, 2 | ablcom 18430 | . . . . . 6 ⊢ ((𝐺 ∈ Abel ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
14 | 5, 10, 11, 13 | syl3anc 1477 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
15 | 1, 4 | grpinvinv 17703 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
16 | 7, 11, 15 | syl2anc 696 | . . . . . 6 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
17 | 16 | oveq1d 6829 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋)) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
18 | 14, 17 | eqtr4d 2797 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
19 | 1, 4 | grpinvcl 17688 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
20 | 7, 11, 19 | syl2anc 696 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
21 | 1, 2, 4 | grpinvadd 17714 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌))) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
22 | 7, 8, 20, 21 | syl3anc 1477 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌))) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
23 | 18, 22 | eqtr4d 2797 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌)))) |
24 | 1, 2, 4, 3 | grpsubval 17686 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)(𝑁‘𝑌))) |
25 | 8, 11, 24 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)(𝑁‘𝑌))) |
26 | 25 | fveq2d 6357 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑋 − 𝑌)) = (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌)))) |
27 | 23, 26 | eqtr4d 2797 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑁‘(𝑋 − 𝑌))) |
28 | 1, 3, 4 | grpinvsub 17718 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
29 | 7, 8, 11, 28 | syl3anc 1477 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
30 | 12, 27, 29 | 3eqtrd 2798 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 Grpcgrp 17643 invgcminusg 17644 -gcsg 17645 Abelcabl 18414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-minusg 17647 df-sbg 17648 df-cmn 18415 df-abl 18416 |
This theorem is referenced by: ngpinvds 22638 hdmap1neglem1N 37637 |
Copyright terms: Public domain | W3C validator |