![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablogrpo | Structured version Visualization version GIF version |
Description: An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablogrpo | ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2761 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
2 | 1 | isablo 27731 | . 2 ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐺𝑦) = (𝑦𝐺𝑥))) |
3 | 2 | simplbi 478 | 1 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ∀wral 3051 ran crn 5268 (class class class)co 6815 GrpOpcgr 27674 AbelOpcablo 27729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-cnv 5275 df-dm 5277 df-rn 5278 df-iota 6013 df-fv 6058 df-ov 6818 df-ablo 27730 |
This theorem is referenced by: ablo32 27734 ablo4 27735 ablomuldiv 27737 ablodivdiv 27738 ablodivdiv4 27739 ablonnncan 27741 ablonncan 27742 ablonnncan1 27743 vcgrp 27756 isvcOLD 27765 isvciOLD 27766 cnidOLD 27768 nvgrp 27803 cnnv 27863 cnnvba 27865 cncph 28005 hilid 28349 hhnv 28353 hhba 28355 hhph 28366 hhssabloilem 28449 hhssnv 28452 ablo4pnp 34011 rngogrpo 34041 iscringd 34129 |
Copyright terms: Public domain | W3C validator |