MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem2 Structured version   Visualization version   GIF version

Theorem ablfaclem2 18685
Description: Lemma for ablfac 18687. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac.o 𝑂 = (od‘𝐺)
ablfac.a 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac.w 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
ablfaclem2.f (𝜑𝐹:𝐴⟶Word 𝐶)
ablfaclem2.q (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
ablfaclem2.l 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
ablfaclem2.g (𝜑𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿)
Assertion
Ref Expression
ablfaclem2 (𝜑 → (𝑊𝐵) ≠ ∅)
Distinct variable groups:   𝑠,𝑝,𝑥,𝑦,𝐴   𝐹,𝑠   𝑔,𝑟,𝑠,𝑦,𝑆   𝑔,𝑝,𝑤,𝑥,𝐵,𝑟,𝑠   𝑂,𝑝,𝑥   𝐶,𝑔,𝑝,𝑠   𝑦,𝑤,𝐶,𝑥   𝑊,𝑝,𝑤,𝑥,𝑦   𝐻,𝑠   𝜑,𝑝,𝑠,𝑤,𝑥,𝑦   𝑔,𝐺,𝑝,𝑟,𝑠,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔,𝑟)   𝐴(𝑤,𝑔,𝑟)   𝐵(𝑦)   𝐶(𝑟)   𝑆(𝑥,𝑤,𝑝)   𝐹(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐻(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐿(𝑥,𝑦,𝑤,𝑔,𝑠,𝑟,𝑝)   𝑂(𝑦,𝑤,𝑔,𝑠,𝑟)   𝑊(𝑔,𝑠,𝑟)

Proof of Theorem ablfaclem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ablfac.1 . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 18398 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 ablfac.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 17797 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
5 ablfac.c . . . 4 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
6 ablfac.2 . . . 4 (𝜑𝐵 ∈ Fin)
7 ablfac.o . . . 4 𝑂 = (od‘𝐺)
8 ablfac.a . . . 4 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
9 ablfac.s . . . 4 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
10 ablfac.w . . . 4 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
113, 5, 1, 6, 7, 8, 9, 10ablfaclem1 18684 . . 3 (𝐵 ∈ (SubGrp‘𝐺) → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
121, 2, 4, 114syl 19 . 2 (𝜑 → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
13 ablfaclem2.f . . . . . . . . . . . . . 14 (𝜑𝐹:𝐴⟶Word 𝐶)
1413ffvelrnda 6522 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ Word 𝐶)
15 wrdf 13496 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ Word 𝐶 → (𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶)
1614, 15syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶)
17 fdm 6212 . . . . . . . . . . . . . 14 ((𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶 → dom (𝐹𝑦) = (0..^(♯‘(𝐹𝑦))))
1816, 17syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → dom (𝐹𝑦) = (0..^(♯‘(𝐹𝑦))))
1918feq2d 6192 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → ((𝐹𝑦):dom (𝐹𝑦)⟶𝐶 ↔ (𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶))
2016, 19mpbird 247 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶𝐶)
2120ffvelrnda 6522 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
2221anasss 682 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
2322ralrimivva 3109 . . . . . . . 8 (𝜑 → ∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶)
24 eqid 2760 . . . . . . . . 9 (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))
2524fmpt2x 7404 . . . . . . . 8 (∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2623, 25sylib 208 . . . . . . 7 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
27 ablfaclem2.l . . . . . . . 8 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
2827feq2i 6198 . . . . . . 7 ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2926, 28sylibr 224 . . . . . 6 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶)
30 ablfaclem2.g . . . . . . 7 (𝜑𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿)
31 f1of 6298 . . . . . . 7 (𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿𝐻:(0..^(♯‘𝐿))⟶𝐿)
3230, 31syl 17 . . . . . 6 (𝜑𝐻:(0..^(♯‘𝐿))⟶𝐿)
33 fco 6219 . . . . . 6 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶𝐻:(0..^(♯‘𝐿))⟶𝐿) → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶)
3429, 32, 33syl2anc 696 . . . . 5 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶)
35 iswrdi 13495 . . . . 5 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
3634, 35syl 17 . . . 4 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
37 ablfaclem2.q . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
3837r19.21bi 3070 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
39 ssrab2 3828 . . . . . . . . . . . . . . . . . . . 20 {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ⊆ ℙ
408, 39eqsstri 3776 . . . . . . . . . . . . . . . . . . 19 𝐴 ⊆ ℙ
4140a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℙ)
423, 7, 9, 1, 6, 41ablfac1b 18669 . . . . . . . . . . . . . . . . 17 (𝜑𝐺dom DProd 𝑆)
43 fvex 6362 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝐺) ∈ V
443, 43eqeltri 2835 . . . . . . . . . . . . . . . . . . . 20 𝐵 ∈ V
4544rabex 4964 . . . . . . . . . . . . . . . . . . 19 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
4645, 9dmmpti 6184 . . . . . . . . . . . . . . . . . 18 dom 𝑆 = 𝐴
4746a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝑆 = 𝐴)
4842, 47dprdf2 18606 . . . . . . . . . . . . . . . 16 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
4948ffvelrnda 6522 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑆𝑦) ∈ (SubGrp‘𝐺))
503, 5, 1, 6, 7, 8, 9, 10ablfaclem1 18684 . . . . . . . . . . . . . . 15 ((𝑆𝑦) ∈ (SubGrp‘𝐺) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
5149, 50syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
5238, 51eleqtrd 2841 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
53 breq2 4808 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → (𝐺dom DProd 𝑠𝐺dom DProd (𝐹𝑦)))
54 oveq2 6821 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑦) → (𝐺 DProd 𝑠) = (𝐺 DProd (𝐹𝑦)))
5554eqeq1d 2762 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → ((𝐺 DProd 𝑠) = (𝑆𝑦) ↔ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5653, 55anbi12d 749 . . . . . . . . . . . . . . 15 (𝑠 = (𝐹𝑦) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦)) ↔ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5756elrab 3504 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} ↔ ((𝐹𝑦) ∈ Word 𝐶 ∧ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5857simprbi 483 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5952, 58syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
6059simpld 477 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝐹𝑦))
61 dprdf 18605 . . . . . . . . . . 11 (𝐺dom DProd (𝐹𝑦) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
6260, 61syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
6362ffvelrnda 6522 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
6463anasss 682 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
6562feqmptd 6411 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6660, 65breqtrd 4830 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6748feqmptd 6411 . . . . . . . . . 10 (𝜑𝑆 = (𝑦𝐴 ↦ (𝑆𝑦)))
6865oveq2d 6829 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
6959simprd 482 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))
7068, 69eqtr3d 2796 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝑆𝑦))
7170mpteq2dva 4896 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))) = (𝑦𝐴 ↦ (𝑆𝑦)))
7267, 71eqtr4d 2797 . . . . . . . . 9 (𝜑𝑆 = (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
7342, 72breqtrd 4830 . . . . . . . 8 (𝜑𝐺dom DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
7464, 66, 73dprd2d2 18643 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∧ (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))))
7574simpld 477 . . . . . 6 (𝜑𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
76 fdm 6212 . . . . . . 7 ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶 → dom (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = 𝐿)
7729, 76syl 17 . . . . . 6 (𝜑 → dom (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = 𝐿)
7875, 77, 30dprdf1o 18631 . . . . 5 (𝜑 → (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
7978simpld 477 . . . 4 (𝜑𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻))
8078simprd 482 . . . . 5 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
8174simprd 482 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
8272oveq2d 6829 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
83 ssid 3765 . . . . . . . 8 𝐴𝐴
8483a1i 11 . . . . . . 7 (𝜑𝐴𝐴)
853, 7, 9, 1, 6, 41, 8, 84ablfac1c 18670 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
8682, 85eqtr3d 2796 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))) = 𝐵)
8780, 81, 863eqtrd 2798 . . . 4 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)
88 breq2 4808 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺dom DProd 𝑠𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
89 oveq2 6821 . . . . . . 7 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺 DProd 𝑠) = (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
9089eqeq1d 2762 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺 DProd 𝑠) = 𝐵 ↔ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵))
9188, 90anbi12d 749 . . . . 5 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵) ↔ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)))
9291rspcev 3449 . . . 4 ((((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶 ∧ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
9336, 79, 87, 92syl12anc 1475 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
94 rabn0 4101 . . 3 ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
9593, 94sylibr 224 . 2 (𝜑 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅)
9612, 95eqnetrd 2999 1 (𝜑 → (𝑊𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  cin 3714  wss 3715  c0 4058  {csn 4321   ciun 4672   class class class wbr 4804  cmpt 4881   × cxp 5264  dom cdm 5266  ran crn 5267  ccom 5270  wf 6045  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813  cmpt2 6815  Fincfn 8121  0cc0 10128  ..^cfzo 12659  cexp 13054  chash 13311  Word cword 13477  cdvds 15182  cprime 15587   pCnt cpc 15743  Basecbs 16059  s cress 16060  Grpcgrp 17623  SubGrpcsubg 17789  odcod 18144   pGrp cpgp 18146  Abelcabl 18394  CycGrpccyg 18479   DProd cdprd 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-ec 7913  df-qs 7917  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-word 13485  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-eqg 17794  df-ghm 17859  df-gim 17902  df-ga 17923  df-cntz 17950  df-oppg 17976  df-od 18148  df-lsm 18251  df-pj1 18252  df-cmn 18395  df-abl 18396  df-dprd 18594
This theorem is referenced by:  ablfaclem3  18686
  Copyright terms: Public domain W3C validator