MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1eu Structured version   Visualization version   GIF version

Theorem ablfac1eu 18672
Description: The factorization of ablfac1b 18669 is unique, in that any other factorization into prime power factors (even if the exponents are different) must be equal to 𝑆. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
ablfac1eu.1 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
ablfac1eu.2 (𝜑 → dom 𝑇 = 𝐴)
ablfac1eu.3 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
ablfac1eu.4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
Assertion
Ref Expression
ablfac1eu (𝜑𝑇 = 𝑆)
Distinct variable groups:   𝑞,𝑝,𝑤,𝑥,𝐵   𝐷,𝑝,𝑞,𝑥   𝜑,𝑝,𝑞,𝑤,𝑥   𝑆,𝑞   𝐴,𝑝,𝑞,𝑥   𝑂,𝑝,𝑞,𝑥   𝑇,𝑞,𝑥   𝐺,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑞,𝑝)   𝐷(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝑇(𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1eu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ablfac1eu.1 . . . . 5 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
21simpld 477 . . . 4 (𝜑𝐺dom DProd 𝑇)
3 ablfac1eu.2 . . . 4 (𝜑 → dom 𝑇 = 𝐴)
42, 3dprdf2 18606 . . 3 (𝜑𝑇:𝐴⟶(SubGrp‘𝐺))
54ffnd 6207 . 2 (𝜑𝑇 Fn 𝐴)
6 ablfac1.b . . . . 5 𝐵 = (Base‘𝐺)
7 ablfac1.o . . . . 5 𝑂 = (od‘𝐺)
8 ablfac1.s . . . . 5 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
9 ablfac1.g . . . . 5 (𝜑𝐺 ∈ Abel)
10 ablfac1.f . . . . 5 (𝜑𝐵 ∈ Fin)
11 ablfac1.1 . . . . 5 (𝜑𝐴 ⊆ ℙ)
126, 7, 8, 9, 10, 11ablfac1b 18669 . . . 4 (𝜑𝐺dom DProd 𝑆)
13 fvex 6362 . . . . . . . 8 (Base‘𝐺) ∈ V
146, 13eqeltri 2835 . . . . . . 7 𝐵 ∈ V
1514rabex 4964 . . . . . 6 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
1615, 8dmmpti 6184 . . . . 5 dom 𝑆 = 𝐴
1716a1i 11 . . . 4 (𝜑 → dom 𝑆 = 𝐴)
1812, 17dprdf2 18606 . . 3 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
1918ffnd 6207 . 2 (𝜑𝑆 Fn 𝐴)
2010adantr 472 . . . 4 ((𝜑𝑞𝐴) → 𝐵 ∈ Fin)
2118ffvelrnda 6522 . . . . 5 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
226subgss 17796 . . . . 5 ((𝑆𝑞) ∈ (SubGrp‘𝐺) → (𝑆𝑞) ⊆ 𝐵)
2321, 22syl 17 . . . 4 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ 𝐵)
2420, 23ssfid 8348 . . 3 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ Fin)
254ffvelrnda 6522 . . . . . 6 ((𝜑𝑞𝐴) → (𝑇𝑞) ∈ (SubGrp‘𝐺))
266subgss 17796 . . . . . 6 ((𝑇𝑞) ∈ (SubGrp‘𝐺) → (𝑇𝑞) ⊆ 𝐵)
2725, 26syl 17 . . . . 5 ((𝜑𝑞𝐴) → (𝑇𝑞) ⊆ 𝐵)
2825adantr 472 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑇𝑞) ∈ (SubGrp‘𝐺))
2920, 27ssfid 8348 . . . . . . . 8 ((𝜑𝑞𝐴) → (𝑇𝑞) ∈ Fin)
3029adantr 472 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑇𝑞) ∈ Fin)
31 simpr 479 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → 𝑥 ∈ (𝑇𝑞))
327odsubdvds 18186 . . . . . . 7 (((𝑇𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑇𝑞) ∈ Fin ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∥ (♯‘(𝑇𝑞)))
3328, 30, 31, 32syl3anc 1477 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∥ (♯‘(𝑇𝑞)))
34 ablfac1eu.4 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
3511sselda 3744 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
36 prmz 15591 . . . . . . . . . 10 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
3735, 36syl 17 . . . . . . . . 9 ((𝜑𝑞𝐴) → 𝑞 ∈ ℤ)
38 ablfac1eu.3 . . . . . . . . 9 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
3938nn0zd 11672 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝐶 ∈ ℤ)
40 ablgrp 18398 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
419, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Grp)
426grpbn0 17652 . . . . . . . . . . . . . . 15 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
4341, 42syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ≠ ∅)
44 hashnncl 13349 . . . . . . . . . . . . . . 15 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
4510, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
4643, 45mpbird 247 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐵) ∈ ℕ)
4746adantr 472 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘𝐵) ∈ ℕ)
4835, 47pccld 15757 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
4948nn0zd 11672 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℤ)
506lagsubg 17857 . . . . . . . . . . . . 13 (((𝑇𝑞) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝑇𝑞)) ∥ (♯‘𝐵))
5125, 20, 50syl2anc 696 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∥ (♯‘𝐵))
5234, 51eqbrtrrd 4828 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞𝐶) ∥ (♯‘𝐵))
5347nnzd 11673 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘𝐵) ∈ ℤ)
54 pcdvdsb 15775 . . . . . . . . . . . 12 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 ≤ (𝑞 pCnt (♯‘𝐵)) ↔ (𝑞𝐶) ∥ (♯‘𝐵)))
5535, 53, 38, 54syl3anc 1477 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐶 ≤ (𝑞 pCnt (♯‘𝐵)) ↔ (𝑞𝐶) ∥ (♯‘𝐵)))
5652, 55mpbird 247 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝐶 ≤ (𝑞 pCnt (♯‘𝐵)))
57 eluz2 11885 . . . . . . . . . 10 ((𝑞 pCnt (♯‘𝐵)) ∈ (ℤ𝐶) ↔ (𝐶 ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℤ ∧ 𝐶 ≤ (𝑞 pCnt (♯‘𝐵))))
5839, 49, 56, 57syl3anbrc 1429 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ (ℤ𝐶))
59 dvdsexp 15251 . . . . . . . . 9 ((𝑞 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ∧ (𝑞 pCnt (♯‘𝐵)) ∈ (ℤ𝐶)) → (𝑞𝐶) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
6037, 38, 58, 59syl3anc 1477 . . . . . . . 8 ((𝜑𝑞𝐴) → (𝑞𝐶) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
6134, 60eqbrtrd 4826 . . . . . . 7 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
6261adantr 472 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
6327sselda 3744 . . . . . . . . 9 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → 𝑥𝐵)
646, 7odcl 18155 . . . . . . . . 9 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
6563, 64syl 17 . . . . . . . 8 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∈ ℕ0)
6665nn0zd 11672 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∈ ℤ)
67 hashcl 13339 . . . . . . . . . 10 ((𝑇𝑞) ∈ Fin → (♯‘(𝑇𝑞)) ∈ ℕ0)
6829, 67syl 17 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∈ ℕ0)
6968nn0zd 11672 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) ∈ ℤ)
7069adantr 472 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (♯‘(𝑇𝑞)) ∈ ℤ)
71 prmnn 15590 . . . . . . . . . . 11 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
7235, 71syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → 𝑞 ∈ ℕ)
7372, 48nnexpcld 13224 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℕ)
7473nnzd 11673 . . . . . . . 8 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ)
7574adantr 472 . . . . . . 7 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ)
76 dvdstr 15220 . . . . . . 7 (((𝑂𝑥) ∈ ℤ ∧ (♯‘(𝑇𝑞)) ∈ ℤ ∧ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ) → (((𝑂𝑥) ∥ (♯‘(𝑇𝑞)) ∧ (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))) → (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))))
7766, 70, 75, 76syl3anc 1477 . . . . . 6 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (((𝑂𝑥) ∥ (♯‘(𝑇𝑞)) ∧ (♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))) → (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))))
7833, 62, 77mp2and 717 . . . . 5 (((𝜑𝑞𝐴) ∧ 𝑥 ∈ (𝑇𝑞)) → (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))))
7927, 78ssrabdv 3822 . . . 4 ((𝜑𝑞𝐴) → (𝑇𝑞) ⊆ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
80 id 22 . . . . . . . . 9 (𝑝 = 𝑞𝑝 = 𝑞)
81 oveq1 6820 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝 pCnt (♯‘𝐵)) = (𝑞 pCnt (♯‘𝐵)))
8280, 81oveq12d 6831 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
8382breq2d 4816 . . . . . . 7 (𝑝 = 𝑞 → ((𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))))
8483rabbidv 3329 . . . . . 6 (𝑝 = 𝑞 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
8584, 8, 15fvmpt3i 6449 . . . . 5 (𝑞𝐴 → (𝑆𝑞) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
8685adantl 473 . . . 4 ((𝜑𝑞𝐴) → (𝑆𝑞) = {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵)))})
8779, 86sseqtr4d 3783 . . 3 ((𝜑𝑞𝐴) → (𝑇𝑞) ⊆ (𝑆𝑞))
8873nnnn0d 11543 . . . . . 6 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℕ0)
89 pcdvds 15770 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
9035, 47, 89syl2anc 696 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
912adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐺dom DProd 𝑇)
923adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → dom 𝑇 = 𝐴)
93 ablfac1.2 . . . . . . . . . . . . . . . 16 (𝜑𝐷𝐴)
9493adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐷𝐴)
9591, 92, 94dprdres 18627 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) ⊆ (𝐺 DProd 𝑇)))
9695simpld 477 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → 𝐺dom DProd (𝑇𝐷))
974adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝑇:𝐴⟶(SubGrp‘𝐺))
9897, 94fssresd 6232 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑇𝐷):𝐷⟶(SubGrp‘𝐺))
99 fdm 6212 . . . . . . . . . . . . . 14 ((𝑇𝐷):𝐷⟶(SubGrp‘𝐺) → dom (𝑇𝐷) = 𝐷)
10098, 99syl 17 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → dom (𝑇𝐷) = 𝐷)
101 difssd 3881 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝐷 ∖ {𝑞}) ⊆ 𝐷)
10296, 100, 101dprdres 18627 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})) ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ⊆ (𝐺 DProd (𝑇𝐷))))
103102simpld 477 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))
104 dprdsubg 18623 . . . . . . . . . . 11 (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺))
105103, 104syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺))
1066lagsubg 17857 . . . . . . . . . 10 (((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵))
107105, 20, 106syl2anc 696 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵))
108 eqid 2760 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
109108subg0cl 17803 . . . . . . . . . . . . . 14 ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))
110105, 109syl 17 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (0g𝐺) ∈ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))
111 ne0i 4064 . . . . . . . . . . . . 13 ((0g𝐺) ∈ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅)
112110, 111syl 17 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅)
1136dprdssv 18615 . . . . . . . . . . . . . 14 (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ⊆ 𝐵
114 ssfi 8345 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ Fin)
11520, 113, 114sylancl 697 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ Fin)
116 hashnncl 13349 . . . . . . . . . . . . 13 ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ∈ Fin → ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℕ ↔ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅))
117115, 116syl 17 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℕ ↔ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))) ≠ ∅))
118112, 117mpbird 247 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℕ)
119118nnzd 11673 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ)
120 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑞𝑥 = 𝑞)
121 sneq 4331 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑞 → {𝑥} = {𝑞})
122121difeq2d 3871 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑞 → (𝐷 ∖ {𝑥}) = (𝐷 ∖ {𝑞}))
123122reseq2d 5551 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑞 → ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})) = ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))
124123oveq2d 6829 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑞 → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥}))) = (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))
125124fveq2d 6356 . . . . . . . . . . . . . . 15 (𝑥 = 𝑞 → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))) = (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
126120, 125breq12d 4817 . . . . . . . . . . . . . 14 (𝑥 = 𝑞 → (𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))) ↔ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
127126notbid 307 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))) ↔ ¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
128 eqid 2760 . . . . . . . . . . . . . . . 16 (𝑝𝐷 ↦ {𝑦𝐵 ∣ (𝑂𝑦) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) = (𝑝𝐷 ↦ {𝑦𝐵 ∣ (𝑂𝑦) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
1299adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐺 ∈ Abel)
13010adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐵 ∈ Fin)
131 ablfac1c.d . . . . . . . . . . . . . . . . . 18 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
132 ssrab2 3828 . . . . . . . . . . . . . . . . . 18 {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ⊆ ℙ
133131, 132eqsstri 3776 . . . . . . . . . . . . . . . . 17 𝐷 ⊆ ℙ
134133a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐷 ⊆ ℙ)
135 ssid 3765 . . . . . . . . . . . . . . . . 17 𝐷𝐷
136135a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐷𝐷)
1372, 3, 93dprdres 18627 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) ⊆ (𝐺 DProd 𝑇)))
138137simpld 477 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺dom DProd (𝑇𝐷))
139 dprdsubg 18623 . . . . . . . . . . . . . . . . . . . . 21 (𝐺dom DProd (𝑇𝐷) → (𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺))
140138, 139syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺))
141 difssd 3881 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐴𝐷) ⊆ 𝐴)
1422, 3, 141dprdres 18627 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐺dom DProd (𝑇 ↾ (𝐴𝐷)) ∧ (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ⊆ (𝐺 DProd 𝑇)))
143142simpld 477 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺dom DProd (𝑇 ↾ (𝐴𝐷)))
144 dprdsubg 18623 . . . . . . . . . . . . . . . . . . . . 21 (𝐺dom DProd (𝑇 ↾ (𝐴𝐷)) → (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ∈ (SubGrp‘𝐺))
145143, 144syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ∈ (SubGrp‘𝐺))
146 difss 3880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐷) ⊆ 𝐴
147 fssres 6231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇:𝐴⟶(SubGrp‘𝐺) ∧ (𝐴𝐷) ⊆ 𝐴) → (𝑇 ↾ (𝐴𝐷)):(𝐴𝐷)⟶(SubGrp‘𝐺))
1484, 146, 147sylancl 697 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑇 ↾ (𝐴𝐷)):(𝐴𝐷)⟶(SubGrp‘𝐺))
149 fdm 6212 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ↾ (𝐴𝐷)):(𝐴𝐷)⟶(SubGrp‘𝐺) → dom (𝑇 ↾ (𝐴𝐷)) = (𝐴𝐷))
150148, 149syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (𝑇 ↾ (𝐴𝐷)) = (𝐴𝐷))
151 fvres 6368 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 ∈ (𝐴𝐷) → ((𝑇 ↾ (𝐴𝐷))‘𝑞) = (𝑇𝑞))
152151adantl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ (𝐴𝐷)) → ((𝑇 ↾ (𝐴𝐷))‘𝑞) = (𝑇𝑞))
153 eldif 3725 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 ∈ (𝐴𝐷) ↔ (𝑞𝐴 ∧ ¬ 𝑞𝐷))
15429adantrr 755 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑇𝑞) ∈ Fin)
155108subg0cl 17803 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑇𝑞) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑇𝑞))
15625, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑞𝐴) → (0g𝐺) ∈ (𝑇𝑞))
157156snssd 4485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑞𝐴) → {(0g𝐺)} ⊆ (𝑇𝑞))
158157adantrr 755 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} ⊆ (𝑇𝑞))
15934adantrr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
16035adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞 ∈ ℙ)
161 iddvdsexp 15207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑞 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑞 ∥ (𝑞𝐶))
16237, 161sylan 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞 ∥ (𝑞𝐶))
16352adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → (𝑞𝐶) ∥ (♯‘𝐵))
16434, 69eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑞𝐴) → (𝑞𝐶) ∈ ℤ)
165 dvdstr 15220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑞 ∈ ℤ ∧ (𝑞𝐶) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((𝑞 ∥ (𝑞𝐶) ∧ (𝑞𝐶) ∥ (♯‘𝐵)) → 𝑞 ∥ (♯‘𝐵)))
16637, 164, 53, 165syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑞𝐴) → ((𝑞 ∥ (𝑞𝐶) ∧ (𝑞𝐶) ∥ (♯‘𝐵)) → 𝑞 ∥ (♯‘𝐵)))
167166adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → ((𝑞 ∥ (𝑞𝐶) ∧ (𝑞𝐶) ∥ (♯‘𝐵)) → 𝑞 ∥ (♯‘𝐵)))
168162, 163, 167mp2and 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞 ∥ (♯‘𝐵))
169 breq1 4807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑤 = 𝑞 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑞 ∥ (♯‘𝐵)))
170169, 131elrab2 3507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑞𝐷 ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)))
171160, 168, 170sylanbrc 701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑞𝐴) ∧ 𝐶 ∈ ℕ) → 𝑞𝐷)
172171ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑞𝐴) → (𝐶 ∈ ℕ → 𝑞𝐷))
173172con3d 148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑞𝐴) → (¬ 𝑞𝐷 → ¬ 𝐶 ∈ ℕ))
174173impr 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ¬ 𝐶 ∈ ℕ)
17538adantrr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝐶 ∈ ℕ0)
176 elnn0 11486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐶 ∈ ℕ0 ↔ (𝐶 ∈ ℕ ∨ 𝐶 = 0))
177175, 176sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐶 ∈ ℕ ∨ 𝐶 = 0))
178177ord 391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (¬ 𝐶 ∈ ℕ → 𝐶 = 0))
179174, 178mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝐶 = 0)
180179oveq2d 6829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑞𝐶) = (𝑞↑0))
18172adantrr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝑞 ∈ ℕ)
182181nncnd 11228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → 𝑞 ∈ ℂ)
183182exp0d 13196 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑞↑0) = 1)
184159, 180, 1833eqtrd 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (♯‘(𝑇𝑞)) = 1)
185 fvex 6362 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0g𝐺) ∈ V
186 hashsng 13351 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
187185, 186ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (♯‘{(0g𝐺)}) = 1
188184, 187syl6reqr 2813 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (♯‘{(0g𝐺)}) = (♯‘(𝑇𝑞)))
189 snfi 8203 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {(0g𝐺)} ∈ Fin
190 hashen 13329 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (({(0g𝐺)} ∈ Fin ∧ (𝑇𝑞) ∈ Fin) → ((♯‘{(0g𝐺)}) = (♯‘(𝑇𝑞)) ↔ {(0g𝐺)} ≈ (𝑇𝑞)))
191189, 154, 190sylancr 698 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ((♯‘{(0g𝐺)}) = (♯‘(𝑇𝑞)) ↔ {(0g𝐺)} ≈ (𝑇𝑞)))
192188, 191mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} ≈ (𝑇𝑞))
193 fisseneq 8336 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑇𝑞) ∈ Fin ∧ {(0g𝐺)} ⊆ (𝑇𝑞) ∧ {(0g𝐺)} ≈ (𝑇𝑞)) → {(0g𝐺)} = (𝑇𝑞))
194154, 158, 192, 193syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} = (𝑇𝑞))
195108subg0cl 17803 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd (𝑇𝐷)))
196140, 195syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (0g𝐺) ∈ (𝐺 DProd (𝑇𝐷)))
197196adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (0g𝐺) ∈ (𝐺 DProd (𝑇𝐷)))
198197snssd 4485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → {(0g𝐺)} ⊆ (𝐺 DProd (𝑇𝐷)))
199194, 198eqsstr3d 3781 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝑇𝑞) ⊆ (𝐺 DProd (𝑇𝐷)))
200153, 199sylan2b 493 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ (𝐴𝐷)) → (𝑇𝑞) ⊆ (𝐺 DProd (𝑇𝐷)))
201152, 200eqsstrd 3780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞 ∈ (𝐴𝐷)) → ((𝑇 ↾ (𝐴𝐷))‘𝑞) ⊆ (𝐺 DProd (𝑇𝐷)))
202143, 150, 140, 201dprdlub 18625 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ⊆ (𝐺 DProd (𝑇𝐷)))
203 eqid 2760 . . . . . . . . . . . . . . . . . . . . 21 (LSSum‘𝐺) = (LSSum‘𝐺)
204203lsmss2 18281 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 DProd (𝑇𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑇 ↾ (𝐴𝐷))) ⊆ (𝐺 DProd (𝑇𝐷))) → ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))) = (𝐺 DProd (𝑇𝐷)))
205140, 145, 202, 204syl3anc 1477 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))) = (𝐺 DProd (𝑇𝐷)))
206 disjdif 4184 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∩ (𝐴𝐷)) = ∅
207206a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐷 ∩ (𝐴𝐷)) = ∅)
208 undif2 4188 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∪ (𝐴𝐷)) = (𝐷𝐴)
209 ssequn1 3926 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐷𝐴 ↔ (𝐷𝐴) = 𝐴)
21093, 209sylib 208 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐷𝐴) = 𝐴)
211208, 210syl5req 2807 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 = (𝐷 ∪ (𝐴𝐷)))
2124, 207, 211, 203, 2dprdsplit 18647 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd 𝑇) = ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))))
2131simprd 482 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺 DProd 𝑇) = 𝐵)
214212, 213eqtr3d 2796 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺 DProd (𝑇𝐷))(LSSum‘𝐺)(𝐺 DProd (𝑇 ↾ (𝐴𝐷)))) = 𝐵)
215205, 214eqtr3d 2796 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 DProd (𝑇𝐷)) = 𝐵)
216138, 215jca 555 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) = 𝐵))
217216adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → (𝐺dom DProd (𝑇𝐷) ∧ (𝐺 DProd (𝑇𝐷)) = 𝐵))
2184, 93fssresd 6232 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑇𝐷):𝐷⟶(SubGrp‘𝐺))
219218, 99syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑇𝐷) = 𝐷)
220219adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → dom (𝑇𝐷) = 𝐷)
22193sselda 3744 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐷) → 𝑞𝐴)
222221, 38syldan 488 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐷) → 𝐶 ∈ ℕ0)
223222adantlr 753 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℙ) ∧ 𝑞𝐷) → 𝐶 ∈ ℕ0)
224 fvres 6368 . . . . . . . . . . . . . . . . . . . 20 (𝑞𝐷 → ((𝑇𝐷)‘𝑞) = (𝑇𝑞))
225224adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐷) → ((𝑇𝐷)‘𝑞) = (𝑇𝑞))
226225fveq2d 6356 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐷) → (♯‘((𝑇𝐷)‘𝑞)) = (♯‘(𝑇𝑞)))
227221, 34syldan 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐷) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
228226, 227eqtrd 2794 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐷) → (♯‘((𝑇𝐷)‘𝑞)) = (𝑞𝐶))
229228adantlr 753 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℙ) ∧ 𝑞𝐷) → (♯‘((𝑇𝐷)‘𝑞)) = (𝑞𝐶))
230 simpr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝑥 ∈ ℙ)
231 fzfid 12966 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...(♯‘𝐵)) ∈ Fin)
232 prmnn 15590 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
2332323ad2ant2 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ ℕ)
234 prmz 15591 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
235 dvdsle 15234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (𝑤 ∥ (♯‘𝐵) → 𝑤 ≤ (♯‘𝐵)))
236234, 46, 235syl2anr 496 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℙ) → (𝑤 ∥ (♯‘𝐵) → 𝑤 ≤ (♯‘𝐵)))
2372363impia 1110 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ≤ (♯‘𝐵))
23846nnzd 11673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (♯‘𝐵) ∈ ℤ)
2392383ad2ant1 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
240 fznn 12601 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐵) ∈ ℤ → (𝑤 ∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵))))
241239, 240syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → (𝑤 ∈ (1...(♯‘𝐵)) ↔ (𝑤 ∈ ℕ ∧ 𝑤 ≤ (♯‘𝐵))))
242233, 237, 241mpbir2and 995 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ℙ ∧ 𝑤 ∥ (♯‘𝐵)) → 𝑤 ∈ (1...(♯‘𝐵)))
243242rabssdv 3823 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵)))
244131, 243syl5eqss 3790 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ⊆ (1...(♯‘𝐵)))
245231, 244ssfid 8348 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ Fin)
246245adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℙ) → 𝐷 ∈ Fin)
2476, 7, 128, 129, 130, 134, 131, 136, 217, 220, 223, 229, 230, 246ablfac1eulem 18671 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℙ) → ¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))))
248247ralrimiva 3104 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ ℙ ¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))))
249248adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → ∀𝑥 ∈ ℙ ¬ 𝑥 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑥})))))
250127, 249, 35rspcdva 3455 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → ¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
251 coprm 15625 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ) → (¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ↔ (𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
25235, 119, 251syl2anc 696 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (¬ 𝑞 ∥ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ↔ (𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
253250, 252mpbid 222 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1)
254 rpexp1i 15635 . . . . . . . . . . . 12 ((𝑞 ∈ ℤ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1 → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
25537, 119, 48, 254syl3anc 1477 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → ((𝑞 gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1 → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1))
256253, 255mpd 15 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1)
257 coprmdvds2 15570 . . . . . . . . . 10 ((((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ ((𝑞↑(𝑞 pCnt (♯‘𝐵))) gcd (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = 1) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵)) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ (♯‘𝐵)))
25874, 119, 53, 256, 257syl31anc 1480 . . . . . . . . 9 ((𝜑𝑞𝐴) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘𝐵) ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∥ (♯‘𝐵)) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ (♯‘𝐵)))
25990, 107, 258mp2and 717 . . . . . . . 8 ((𝜑𝑞𝐴) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ (♯‘𝐵))
260 eqid 2760 . . . . . . . . . 10 (Cntz‘𝐺) = (Cntz‘𝐺)
261 inss1 3976 . . . . . . . . . . . . . 14 (𝐷 ∩ {𝑞}) ⊆ 𝐷
262261a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝐷 ∩ {𝑞}) ⊆ 𝐷)
26396, 100, 262dprdres 18627 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ (𝐺 DProd (𝑇𝐷))))
264263simpld 477 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))
265 dprdsubg 18623 . . . . . . . . . . 11 (𝐺dom DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ (SubGrp‘𝐺))
266264, 265syl 17 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ (SubGrp‘𝐺))
267 inass 3966 . . . . . . . . . . . . 13 ((𝐷 ∩ {𝑞}) ∩ (𝐷 ∖ {𝑞})) = (𝐷 ∩ ({𝑞} ∩ (𝐷 ∖ {𝑞})))
268 disjdif 4184 . . . . . . . . . . . . . 14 ({𝑞} ∩ (𝐷 ∖ {𝑞})) = ∅
269268ineq2i 3954 . . . . . . . . . . . . 13 (𝐷 ∩ ({𝑞} ∩ (𝐷 ∖ {𝑞}))) = (𝐷 ∩ ∅)
270 in0 4111 . . . . . . . . . . . . 13 (𝐷 ∩ ∅) = ∅
271267, 269, 2703eqtri 2786 . . . . . . . . . . . 12 ((𝐷 ∩ {𝑞}) ∩ (𝐷 ∖ {𝑞})) = ∅
272271a1i 11 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → ((𝐷 ∩ {𝑞}) ∩ (𝐷 ∖ {𝑞})) = ∅)
27396, 100, 262, 101, 272, 108dprddisj2 18638 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∩ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) = {(0g𝐺)})
27496, 100, 262, 101, 272, 260dprdcntz2 18637 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
2756dprdssv 18615 . . . . . . . . . . 11 (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ 𝐵
276 ssfi 8345 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ Fin)
27720, 275, 276sylancl 697 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) ∈ Fin)
278203, 108, 260, 266, 105, 273, 274, 277, 115lsmhash 18318 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
279 inundif 4190 . . . . . . . . . . . . . 14 ((𝐷 ∩ {𝑞}) ∪ (𝐷 ∖ {𝑞})) = 𝐷
280279eqcomi 2769 . . . . . . . . . . . . 13 𝐷 = ((𝐷 ∩ {𝑞}) ∪ (𝐷 ∖ {𝑞}))
281280a1i 11 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → 𝐷 = ((𝐷 ∩ {𝑞}) ∪ (𝐷 ∖ {𝑞})))
28298, 272, 281, 203, 96dprdsplit 18647 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺 DProd (𝑇𝐷)) = ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))))
283215adantr 472 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺 DProd (𝑇𝐷)) = 𝐵)
284282, 283eqtr3d 2796 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) = 𝐵)
285284fveq2d 6356 . . . . . . . . 9 ((𝜑𝑞𝐴) → (♯‘((𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))(LSSum‘𝐺)(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = (♯‘𝐵))
286 snssi 4484 . . . . . . . . . . . . . . . . 17 (𝑞𝐷 → {𝑞} ⊆ 𝐷)
287286adantl 473 . . . . . . . . . . . . . . . 16 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → {𝑞} ⊆ 𝐷)
288 sseqin2 3960 . . . . . . . . . . . . . . . 16 ({𝑞} ⊆ 𝐷 ↔ (𝐷 ∩ {𝑞}) = {𝑞})
289287, 288sylib 208 . . . . . . . . . . . . . . 15 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐷 ∩ {𝑞}) = {𝑞})
290289reseq2d 5551 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) = ((𝑇𝐷) ↾ {𝑞}))
291290oveq2d 6829 . . . . . . . . . . . . 13 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝐺 DProd ((𝑇𝐷) ↾ {𝑞})))
29296adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → 𝐺dom DProd (𝑇𝐷))
293219ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → dom (𝑇𝐷) = 𝐷)
294 simpr 479 . . . . . . . . . . . . . 14 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → 𝑞𝐷)
295292, 293, 294dpjlem 18650 . . . . . . . . . . . . 13 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ {𝑞})) = ((𝑇𝐷)‘𝑞))
296224adantl 473 . . . . . . . . . . . . 13 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → ((𝑇𝐷)‘𝑞) = (𝑇𝑞))
297291, 295, 2963eqtrd 2798 . . . . . . . . . . . 12 (((𝜑𝑞𝐴) ∧ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
298 simprr 813 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ¬ 𝑞𝐷)
299 disjsn 4390 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∩ {𝑞}) = ∅ ↔ ¬ 𝑞𝐷)
300298, 299sylibr 224 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐷 ∩ {𝑞}) = ∅)
301300reseq2d 5551 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) = ((𝑇𝐷) ↾ ∅))
302 res0 5555 . . . . . . . . . . . . . . . 16 ((𝑇𝐷) ↾ ∅) = ∅
303301, 302syl6eq 2810 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})) = ∅)
304303oveq2d 6829 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝐺 DProd ∅))
305108dprd0 18630 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
30641, 305syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
307306simprd 482 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 DProd ∅) = {(0g𝐺)})
308307adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐺 DProd ∅) = {(0g𝐺)})
309304, 308, 1943eqtrd 2798 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑞𝐴 ∧ ¬ 𝑞𝐷)) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
310309anassrs 683 . . . . . . . . . . . 12 (((𝜑𝑞𝐴) ∧ ¬ 𝑞𝐷) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
311297, 310pm2.61dan 867 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞}))) = (𝑇𝑞))
312311fveq2d 6356 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))) = (♯‘(𝑇𝑞)))
313312oveq1d 6828 . . . . . . . . 9 ((𝜑𝑞𝐴) → ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∩ {𝑞})))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) = ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
314278, 285, 3133eqtr3d 2802 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘𝐵) = ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
315259, 314breqtrd 4830 . . . . . . 7 ((𝜑𝑞𝐴) → ((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))))
316118nnne0d 11257 . . . . . . . 8 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ≠ 0)
317 dvdsmulcr 15213 . . . . . . . 8 (((𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℤ ∧ (♯‘(𝑇𝑞)) ∈ ℤ ∧ ((♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ∈ ℤ ∧ (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞})))) ≠ 0)) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞))))
31874, 69, 119, 316, 317syl112anc 1481 . . . . . . 7 ((𝜑𝑞𝐴) → (((𝑞↑(𝑞 pCnt (♯‘𝐵))) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ∥ ((♯‘(𝑇𝑞)) · (♯‘(𝐺 DProd ((𝑇𝐷) ↾ (𝐷 ∖ {𝑞}))))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞))))
319315, 318mpbid 222 . . . . . 6 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞)))
320 dvdseq 15238 . . . . . 6 ((((♯‘(𝑇𝑞)) ∈ ℕ0 ∧ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∈ ℕ0) ∧ ((♯‘(𝑇𝑞)) ∥ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∧ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝑇𝑞)))) → (♯‘(𝑇𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
32168, 88, 61, 319, 320syl22anc 1478 . . . . 5 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
3226, 7, 8, 9, 10, 11ablfac1a 18668 . . . . 5 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
323321, 322eqtr4d 2797 . . . 4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (♯‘(𝑆𝑞)))
324 hashen 13329 . . . . 5 (((𝑇𝑞) ∈ Fin ∧ (𝑆𝑞) ∈ Fin) → ((♯‘(𝑇𝑞)) = (♯‘(𝑆𝑞)) ↔ (𝑇𝑞) ≈ (𝑆𝑞)))
32529, 24, 324syl2anc 696 . . . 4 ((𝜑𝑞𝐴) → ((♯‘(𝑇𝑞)) = (♯‘(𝑆𝑞)) ↔ (𝑇𝑞) ≈ (𝑆𝑞)))
326323, 325mpbid 222 . . 3 ((𝜑𝑞𝐴) → (𝑇𝑞) ≈ (𝑆𝑞))
327 fisseneq 8336 . . 3 (((𝑆𝑞) ∈ Fin ∧ (𝑇𝑞) ⊆ (𝑆𝑞) ∧ (𝑇𝑞) ≈ (𝑆𝑞)) → (𝑇𝑞) = (𝑆𝑞))
32824, 87, 326, 327syl3anc 1477 . 2 ((𝜑𝑞𝐴) → (𝑇𝑞) = (𝑆𝑞))
3295, 19, 328eqfnfvd 6477 1 (𝜑𝑇 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  {crab 3054  Vcvv 3340  cdif 3712  cun 3713  cin 3714  wss 3715  c0 4058  {csn 4321   class class class wbr 4804  cmpt 4881  dom cdm 5266  cres 5268  wf 6045  cfv 6049  (class class class)co 6813  cen 8118  Fincfn 8121  0cc0 10128  1c1 10129   · cmul 10133  cle 10267  cn 11212  0cn0 11484  cz 11569  cuz 11879  ...cfz 12519  cexp 13054  chash 13311  cdvds 15182   gcd cgcd 15418  cprime 15587   pCnt cpc 15743  Basecbs 16059  0gc0g 16302  Grpcgrp 17623  SubGrpcsubg 17789  Cntzccntz 17948  odcod 18144  LSSumclsm 18249  Abelcabl 18394   DProd cdprd 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-ec 7913  df-qs 7917  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-eqg 17794  df-ghm 17859  df-gim 17902  df-ga 17923  df-cntz 17950  df-oppg 17976  df-od 18148  df-lsm 18251  df-pj1 18252  df-cmn 18395  df-abl 18396  df-dprd 18594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator