![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablfac1a | Structured version Visualization version GIF version |
Description: The factors of ablfac1b 18689 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
Ref | Expression |
---|---|
ablfac1a | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
2 | oveq1 6821 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝐵)) = (𝑃 pCnt (♯‘𝐵))) | |
3 | 1, 2 | oveq12d 6832 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (𝑝↑(𝑝 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
4 | 3 | breq2d 4816 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵))) ↔ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
5 | 4 | rabbidv 3329 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
6 | ablfac1.s | . . . . 5 ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) | |
7 | ablfac1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
8 | fvex 6363 | . . . . . . 7 ⊢ (Base‘𝐺) ∈ V | |
9 | 7, 8 | eqeltri 2835 | . . . . . 6 ⊢ 𝐵 ∈ V |
10 | 9 | rabex 4964 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V |
11 | 5, 6, 10 | fvmpt3i 6450 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
12 | 11 | adantl 473 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑆‘𝑃) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) |
13 | 12 | fveq2d 6357 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))})) |
14 | ablfac1.o | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
15 | eqid 2760 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))} | |
16 | eqid 2760 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))} | |
17 | ablfac1.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
18 | 17 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝐺 ∈ Abel) |
19 | ablfac1.f | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
20 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
21 | eqid 2760 | . . . . . . 7 ⊢ (𝑃↑(𝑃 pCnt (♯‘𝐵))) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) | |
22 | eqid 2760 | . . . . . . 7 ⊢ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) | |
23 | 7, 14, 6, 17, 19, 20, 21, 22 | ablfac1lem 18687 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) ∧ ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1 ∧ (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))))) |
24 | 23 | simp1d 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ ∧ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ)) |
25 | 24 | simpld 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ) |
26 | 24 | simprd 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) ∈ ℕ) |
27 | 23 | simp2d 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) = 1) |
28 | 23 | simp3d 1139 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) · ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
29 | 7, 14, 15, 16, 18, 25, 26, 27, 28 | ablfacrp2 18686 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∧ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))}) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))) |
30 | 29 | simpld 477 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))}) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
31 | 13, 30 | eqtrd 2794 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘(𝑆‘𝑃)) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {crab 3054 Vcvv 3340 ⊆ wss 3715 class class class wbr 4804 ↦ cmpt 4881 ‘cfv 6049 (class class class)co 6814 Fincfn 8123 1c1 10149 · cmul 10153 / cdiv 10896 ℕcn 11232 ↑cexp 13074 ♯chash 13331 ∥ cdvds 15202 gcd cgcd 15438 ℙcprime 15607 pCnt cpc 15763 Basecbs 16079 odcod 18164 Abelcabl 18414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-disj 4773 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-omul 7735 df-er 7913 df-ec 7915 df-qs 7919 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-acn 8978 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-xnn0 11576 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-fz 12540 df-fzo 12680 df-fl 12807 df-mod 12883 df-seq 13016 df-exp 13075 df-fac 13275 df-bc 13304 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-sum 14636 df-dvds 15203 df-gcd 15439 df-prm 15608 df-pc 15764 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mulg 17762 df-subg 17812 df-eqg 17814 df-ga 17943 df-cntz 17970 df-od 18168 df-lsm 18271 df-pj1 18272 df-cmn 18415 df-abl 18416 |
This theorem is referenced by: ablfac1c 18690 ablfac1eu 18692 ablfaclem3 18706 |
Copyright terms: Public domain | W3C validator |