![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablcom | Structured version Visualization version GIF version |
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
ablcom.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ablcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcmn 18399 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
2 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | cmncom 18409 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
5 | 1, 4 | syl3an1 1167 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 CMndccmn 18393 Abelcabl 18394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6816 df-cmn 18395 df-abl 18396 |
This theorem is referenced by: ablinvadd 18415 ablsub2inv 18416 ablsubadd 18417 abladdsub 18420 ablpncan3 18422 ablsub32 18427 ablnnncan 18428 ablsubsub23 18430 eqgabl 18440 subgabl 18441 ablnsg 18450 lsmcomx 18459 qusabl 18468 frgpnabl 18478 ngplcan 22616 clmnegsubdi2 23105 clmvsubval2 23110 ncvspi 23156 r1pid 24118 abliso 30005 cnaddcom 34762 toycom 34763 lflsub 34857 lfladdcom 34862 |
Copyright terms: Public domain | W3C validator |