Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abidnf Structured version   Visualization version   GIF version

Theorem abidnf 3527
 Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
abidnf (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝑧   𝑧,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem abidnf
StepHypRef Expression
1 sp 2207 . . 3 (∀𝑥 𝑧𝐴𝑧𝐴)
2 nfcr 2905 . . . 4 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
32nf5rd 2220 . . 3 (𝑥𝐴 → (𝑧𝐴 → ∀𝑥 𝑧𝐴))
41, 3impbid2 216 . 2 (𝑥𝐴 → (∀𝑥 𝑧𝐴𝑧𝐴))
54abbi1dv 2892 1 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1629   = wceq 1631   ∈ wcel 2145  {cab 2757  Ⅎwnfc 2900 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902 This theorem is referenced by:  dedhb  3528  nfopd  4557  nfimad  5615  nffvd  6343  nfunidALT2  34778  nfunidALT  34779  nfopdALT  34780
 Copyright terms: Public domain W3C validator