![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abf | Structured version Visualization version GIF version |
Description: A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.) |
Ref | Expression |
---|---|
abf.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4094 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
2 | abf.1 | . 2 ⊢ ¬ 𝜑 | |
3 | 1, 2 | mpgbir 1875 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 {cab 2746 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-nul 4059 |
This theorem is referenced by: csbprc 4123 csbprcOLD 4124 mpt20 6890 fi0 8491 meet0 17338 join0 17339 0qs 34455 pmapglb2xN 35561 |
Copyright terms: Public domain | W3C validator |