![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abeq2f | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction. In this version, the fact that 𝑥 is a non-free variable in 𝐴 is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) |
Ref | Expression |
---|---|
abeq2f.0 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
abeq2f | ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2f.0 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcrii 2887 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
3 | hbab1 2741 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
4 | 2, 3 | cleqh 2854 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) |
5 | abid 2740 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
6 | 5 | bibi2i 326 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) |
7 | 6 | albii 1888 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
8 | 4, 7 | bitri 264 | 1 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1622 = wceq 1624 ∈ wcel 2131 {cab 2738 Ⅎwnfc 2881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 |
This theorem is referenced by: rabid2f 3250 mptfnf 6168 |
Copyright terms: Public domain | W3C validator |