![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abeq1i | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 31-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
abeq1i.1 | ⊢ {𝑥 ∣ 𝜑} = 𝐴 |
Ref | Expression |
---|---|
abeq1i | ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq1i.1 | . . . 4 ⊢ {𝑥 ∣ 𝜑} = 𝐴 | |
2 | 1 | eqcomi 2769 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
3 | 2 | abeq2i 2873 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
4 | 3 | bicomi 214 | 1 ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∈ wcel 2139 {cab 2746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-12 2196 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1635 df-ex 1854 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |