MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Structured version   Visualization version   GIF version

Theorem abelthlem5 24409
Description: Lemma for abelth 24415. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem5 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝑛,𝑥,𝑧,𝑀   𝑘,𝑋,𝑛,𝑥,𝑧   𝐴,𝑘,𝑛,𝑥,𝑧   𝜑,𝑘,𝑛,𝑥   𝑆,𝑘,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑘,𝑛)

Proof of Theorem abelthlem5
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11936 . . . 4 0 = (ℤ‘0)
2 0zd 11602 . . . 4 (𝜑 → 0 ∈ ℤ)
3 1rp 12050 . . . . 5 1 ∈ ℝ+
43a1i 11 . . . 4 (𝜑 → 1 ∈ ℝ+)
5 eqidd 2762 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑚) = (seq0( + , 𝐴)‘𝑚))
6 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
71, 2, 4, 5, 6climi0 14463 . . 3 (𝜑 → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
87adantr 472 . 2 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → ∃𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
9 simprl 811 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑗 ∈ ℕ0)
10 oveq2 6823 . . . . . 6 (𝑛 = 𝑖 → ((abs‘𝑋)↑𝑛) = ((abs‘𝑋)↑𝑖))
11 eqid 2761 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))
12 ovex 6843 . . . . . 6 ((abs‘𝑋)↑𝑖) ∈ V
1310, 11, 12fvmpt 6446 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
1413adantl 473 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
15 cnxmet 22798 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
16 0cn 10245 . . . . . . . 8 0 ∈ ℂ
17 rpxr 12054 . . . . . . . . 9 (1 ∈ ℝ+ → 1 ∈ ℝ*)
183, 17ax-mp 5 . . . . . . . 8 1 ∈ ℝ*
19 blssm 22445 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ*) → (0(ball‘(abs ∘ − ))1) ⊆ ℂ)
2015, 16, 18, 19mp3an 1573 . . . . . . 7 (0(ball‘(abs ∘ − ))1) ⊆ ℂ
21 simplr 809 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ (0(ball‘(abs ∘ − ))1))
2220, 21sseldi 3743 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 𝑋 ∈ ℂ)
2322abscld 14395 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℝ)
24 reexpcl 13092 . . . . 5 (((abs‘𝑋) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2523, 24sylan 489 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
2614, 25eqeltrd 2840 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) ∈ ℝ)
27 fveq2 6354 . . . . . . 7 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
28 oveq2 6823 . . . . . . 7 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
2927, 28oveq12d 6833 . . . . . 6 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
30 eqid 2761 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
31 ovex 6843 . . . . . 6 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
3229, 30, 31fvmpt 6446 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
3332adantl 473 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
34 abelth.1 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
3534ffvelrnda 6524 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
361, 2, 35serf 13044 . . . . . . 7 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3736ad2antrr 764 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , 𝐴):ℕ0⟶ℂ)
3837ffvelrnda 6524 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
39 expcl 13093 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
4022, 39sylan 489 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
4138, 40mulcld 10273 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
4233, 41eqeltrd 2840 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
4323recnd 10281 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) ∈ ℂ)
44 absidm 14283 . . . . . . 7 (𝑋 ∈ ℂ → (abs‘(abs‘𝑋)) = (abs‘𝑋))
4522, 44syl 17 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) = (abs‘𝑋))
46 eqid 2761 . . . . . . . . . 10 (abs ∘ − ) = (abs ∘ − )
4746cnmetdval 22796 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4822, 16, 47sylancl 697 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0)))
4922subid1d 10594 . . . . . . . . 9 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 − 0) = 𝑋)
5049fveq2d 6358 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(𝑋 − 0)) = (abs‘𝑋))
5148, 50eqtrd 2795 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) = (abs‘𝑋))
52 elbl3 22419 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5315, 18, 52mpanl12 720 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5416, 22, 53sylancr 698 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) < 1))
5521, 54mpbid 222 . . . . . . 7 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (𝑋(abs ∘ − )0) < 1)
5651, 55eqbrtrrd 4829 . . . . . 6 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘𝑋) < 1)
5745, 56eqbrtrd 4827 . . . . 5 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → (abs‘(abs‘𝑋)) < 1)
5843, 57, 14geolim 14821 . . . 4 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))))
59 climrel 14443 . . . . 5 Rel ⇝
6059releldmi 5518 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ⇝ (1 / (1 − (abs‘𝑋))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
6158, 60syl 17 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))) ∈ dom ⇝ )
62 1red 10268 . . 3 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → 1 ∈ ℝ)
6337adantr 472 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → seq0( + , 𝐴):ℕ0⟶ℂ)
64 eluznn0 11971 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
659, 64sylan 489 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ0)
6663, 65ffvelrnd 6525 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
6765, 40syldan 488 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (𝑋𝑖) ∈ ℂ)
6866, 67absmuld 14413 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))))
6922adantr 472 . . . . . . . 8 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑋 ∈ ℂ)
7069, 65absexpd 14411 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(𝑋𝑖)) = ((abs‘𝑋)↑𝑖))
7170oveq2d 6831 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · (abs‘(𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7268, 71eqtrd 2795 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) = ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)))
7366abscld 14395 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
74 1red 10268 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
7565, 25syldan 488 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑖) ∈ ℝ)
7667absge0d 14403 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ (abs‘(𝑋𝑖)))
7776, 70breqtrd 4831 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → 0 ≤ ((abs‘𝑋)↑𝑖))
78 simprr 813 . . . . . . . 8 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)
79 fveq2 6354 . . . . . . . . . . 11 (𝑚 = 𝑖 → (seq0( + , 𝐴)‘𝑚) = (seq0( + , 𝐴)‘𝑖))
8079fveq2d 6358 . . . . . . . . . 10 (𝑚 = 𝑖 → (abs‘(seq0( + , 𝐴)‘𝑚)) = (abs‘(seq0( + , 𝐴)‘𝑖)))
8180breq1d 4815 . . . . . . . . 9 (𝑚 = 𝑖 → ((abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ↔ (abs‘(seq0( + , 𝐴)‘𝑖)) < 1))
8281rspccva 3449 . . . . . . . 8 ((∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1 ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
8378, 82sylan 489 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) < 1)
84 1re 10252 . . . . . . . 8 1 ∈ ℝ
85 ltle 10339 . . . . . . . 8 (((abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8673, 84, 85sylancl 697 . . . . . . 7 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) < 1 → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1))
8783, 86mpd 15 . . . . . 6 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘(seq0( + , 𝐴)‘𝑖)) ≤ 1)
8873, 74, 75, 77, 87lemul1ad 11176 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘(seq0( + , 𝐴)‘𝑖)) · ((abs‘𝑋)↑𝑖)) ≤ (1 · ((abs‘𝑋)↑𝑖)))
8972, 88eqbrtrd 4827 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ≤ (1 · ((abs‘𝑋)↑𝑖)))
9065, 32syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
9190fveq2d 6358 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (abs‘((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
9265, 13syl 17 . . . . 5 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖) = ((abs‘𝑋)↑𝑖))
9392oveq2d 6831 . . . 4 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)) = (1 · ((abs‘𝑋)↑𝑖)))
9489, 91, 933brtr4d 4837 . . 3 ((((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) ∧ 𝑖 ∈ (ℤ𝑗)) → (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝑋)↑𝑛))‘𝑖)))
951, 9, 26, 42, 61, 62, 94cvgcmpce 14770 . 2 (((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < 1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
968, 95rexlimddv 3174 1 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wral 3051  wrex 3052  {crab 3055  wss 3716   class class class wbr 4805  cmpt 4882  dom cdm 5267  ccom 5271  wf 6046  cfv 6050  (class class class)co 6815  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  *cxr 10286   < clt 10287  cle 10288  cmin 10479   / cdiv 10897  0cn0 11505  cuz 11900  +crp 12046  seqcseq 13016  cexp 13075  abscabs 14194  cli 14435  Σcsu 14636  ∞Metcxmt 19954  ballcbl 19956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-xadd 12161  df-ico 12395  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-limsup 14422  df-clim 14439  df-rlim 14440  df-sum 14637  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964
This theorem is referenced by:  abelthlem6  24410  abelthlem7  24412
  Copyright terms: Public domain W3C validator