![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbi1dv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
abbi1dv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
abbi1dv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1dv.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | bicomd 213 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
3 | 2 | abbi2dv 2880 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
4 | 3 | eqcomd 2766 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 {cab 2746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 |
This theorem is referenced by: abidnf 3516 csbtt 3685 csbie2g 3705 csbvarg 4146 iinxsng 4752 predep 5867 enfin2i 9355 fin1a2lem11 9444 hashf1 13453 shftuz 14028 psrbaglefi 19594 vmappw 25062 hdmap1fval 37606 hdmapfval 37639 hgmapfval 37698 |
Copyright terms: Public domain | W3C validator |