![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbi | Structured version Visualization version GIF version |
Description: Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
abbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbab1 2640 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
2 | hbab1 2640 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜓}) | |
3 | 1, 2 | cleqh 2753 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜓})) |
4 | abid 2639 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
5 | abid 2639 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
6 | 4, 5 | bibi12i 328 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 ↔ 𝜓)) |
7 | 6 | albii 1787 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
8 | 3, 7 | bitr2i 265 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1521 = wceq 1523 ∈ wcel 2030 {cab 2637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 |
This theorem is referenced by: abbii 2768 abbid 2769 nabbi 2925 rabbi 3150 sbcbi2 3517 rabeqsn 4246 iuneq12df 4576 dfiota2 5890 iotabi 5898 uniabio 5899 iotanul 5904 karden 8796 iuneq12daf 29499 bj-cleq 33074 abeq12 34094 elnev 38956 csbingVD 39434 csbsngVD 39443 csbxpgVD 39444 csbrngVD 39446 csbunigVD 39448 csbfv12gALTVD 39449 |
Copyright terms: Public domain | W3C validator |