MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab2rexex2 Structured version   Visualization version   GIF version

Theorem ab2rexex2 7307
Description: Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 7295. (Contributed by NM, 20-Sep-2011.)
Hypotheses
Ref Expression
ab2rexex2.1 𝐴 ∈ V
ab2rexex2.2 𝐵 ∈ V
ab2rexex2.3 {𝑧𝜑} ∈ V
Assertion
Ref Expression
ab2rexex2 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} ∈ V
Distinct variable groups:   𝑥,𝑧,𝐴   𝑦,𝑧,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦)   𝐵(𝑥)

Proof of Theorem ab2rexex2
StepHypRef Expression
1 ab2rexex2.1 . 2 𝐴 ∈ V
2 ab2rexex2.2 . . 3 𝐵 ∈ V
3 ab2rexex2.3 . . 3 {𝑧𝜑} ∈ V
42, 3abrexex2 7295 . 2 {𝑧 ∣ ∃𝑦𝐵 𝜑} ∈ V
51, 4abrexex2 7295 1 {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2145  {cab 2757  wrex 3062  Vcvv 3351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039
This theorem is referenced by:  brdom7disj  9555  brdom6disj  9556  lineset  35546
  Copyright terms: Public domain W3C validator