MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem3 Structured version   Visualization version   GIF version

Theorem aannenlem3 24255
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem3 𝔸 ≈ ℕ
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem3
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aannenlem.a . . . . . 6 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
21aannenlem2 24254 . . . . 5 𝔸 = ran 𝐻
3 omelon 8704 . . . . . . . . . 10 ω ∈ On
4 nn0ennn 12943 . . . . . . . . . . . 12 0 ≈ ℕ
5 nnenom 12944 . . . . . . . . . . . 12 ℕ ≈ ω
64, 5entri 8163 . . . . . . . . . . 11 0 ≈ ω
76ensymi 8159 . . . . . . . . . 10 ω ≈ ℕ0
8 isnumi 8933 . . . . . . . . . 10 ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card)
93, 7, 8mp2an 710 . . . . . . . . 9 0 ∈ dom card
10 cnex 10180 . . . . . . . . . . . 12 ℂ ∈ V
1110rabex 4952 . . . . . . . . . . 11 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ∈ V
1211, 1fnmpti 6171 . . . . . . . . . 10 𝐻 Fn ℕ0
13 dffn4 6270 . . . . . . . . . 10 (𝐻 Fn ℕ0𝐻:ℕ0onto→ran 𝐻)
1412, 13mpbi 220 . . . . . . . . 9 𝐻:ℕ0onto→ran 𝐻
15 fodomnum 9041 . . . . . . . . 9 (ℕ0 ∈ dom card → (𝐻:ℕ0onto→ran 𝐻 → ran 𝐻 ≼ ℕ0))
169, 14, 15mp2 9 . . . . . . . 8 ran 𝐻 ≼ ℕ0
17 domentr 8168 . . . . . . . 8 ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω)
1816, 6, 17mp2an 710 . . . . . . 7 ran 𝐻 ≼ ω
1918a1i 11 . . . . . 6 (𝑓 Or ℂ → ran 𝐻 ≼ ω)
20 fvelrnb 6393 . . . . . . . . . 10 (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓))
2112, 20ax-mp 5 . . . . . . . . 9 (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓)
221aannenlem1 24253 . . . . . . . . . . 11 (𝑔 ∈ ℕ0 → (𝐻𝑔) ∈ Fin)
23 eleq1 2815 . . . . . . . . . . 11 ((𝐻𝑔) = 𝑓 → ((𝐻𝑔) ∈ Fin ↔ 𝑓 ∈ Fin))
2422, 23syl5ibcom 235 . . . . . . . . . 10 (𝑔 ∈ ℕ0 → ((𝐻𝑔) = 𝑓𝑓 ∈ Fin))
2524rexlimiv 3153 . . . . . . . . 9 (∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓𝑓 ∈ Fin)
2621, 25sylbi 207 . . . . . . . 8 (𝑓 ∈ ran 𝐻𝑓 ∈ Fin)
2726ssriv 3736 . . . . . . 7 ran 𝐻 ⊆ Fin
2827a1i 11 . . . . . 6 (𝑓 Or ℂ → ran 𝐻 ⊆ Fin)
29 aasscn 24243 . . . . . . . 8 𝔸 ⊆ ℂ
302, 29eqsstr3i 3765 . . . . . . 7 ran 𝐻 ⊆ ℂ
31 soss 5193 . . . . . . 7 ( ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ran 𝐻))
3230, 31ax-mp 5 . . . . . 6 (𝑓 Or ℂ → 𝑓 Or ran 𝐻)
33 iunfictbso 9098 . . . . . 6 ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ran 𝐻) → ran 𝐻 ≼ ω)
3419, 28, 32, 33syl3anc 1463 . . . . 5 (𝑓 Or ℂ → ran 𝐻 ≼ ω)
352, 34syl5eqbr 4827 . . . 4 (𝑓 Or ℂ → 𝔸 ≼ ω)
36 cnso 15146 . . . 4 𝑓 𝑓 Or ℂ
3735, 36exlimiiv 1996 . . 3 𝔸 ≼ ω
385ensymi 8159 . . 3 ω ≈ ℕ
39 domentr 8168 . . 3 ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ)
4037, 38, 39mp2an 710 . 2 𝔸 ≼ ℕ
4110, 29ssexi 4943 . . 3 𝔸 ∈ V
42 nnssq 11961 . . . 4 ℕ ⊆ ℚ
43 qssaa 24249 . . . 4 ℚ ⊆ 𝔸
4442, 43sstri 3741 . . 3 ℕ ⊆ 𝔸
45 ssdomg 8155 . . 3 (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸))
4641, 44, 45mp2 9 . 2 ℕ ≼ 𝔸
47 sbth 8233 . 2 ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ)
4840, 46, 47mp2an 710 1 𝔸 ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1072   = wceq 1620  wcel 2127  wne 2920  wral 3038  wrex 3039  {crab 3042  Vcvv 3328  wss 3703   cuni 4576   class class class wbr 4792  cmpt 4869   Or wor 5174  dom cdm 5254  ran crn 5255  Oncon0 5872   Fn wfn 6032  ontowfo 6035  cfv 6037  ωcom 7218  cen 8106  cdom 8107  Fincfn 8109  cardccrd 8922  cc 10097  0cc0 10099  cle 10238  cn 11183  0cn0 11455  cz 11540  cq 11952  abscabs 14144  0𝑝c0p 23606  Polycply 24110  coeffccoe 24112  degcdgr 24113  𝔸caa 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-addf 10178
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-acn 8929  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-xnn0 11527  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-mod 12834  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-limsup 14372  df-clim 14389  df-rlim 14390  df-sum 14587  df-0p 23607  df-ply 24114  df-idp 24115  df-coe 24116  df-dgr 24117  df-quot 24216  df-aa 24240
This theorem is referenced by:  aannen  24256
  Copyright terms: Public domain W3C validator