MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem2 Structured version   Visualization version   GIF version

Theorem aannenlem2 24129
Description: Lemma for aannen 24131. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem2 𝔸 = ran 𝐻
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem2
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1083 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → 𝑔 ∈ ℂ)
2 eldifi 3765 . . . . . . . . . . . . . 14 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ∈ (Poly‘ℤ))
32adantr 480 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ∈ (Poly‘ℤ))
433adant2 1100 . . . . . . . . . . . 12 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∈ (Poly‘ℤ))
5 eldifsni 4353 . . . . . . . . . . . . . . 15 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ≠ 0𝑝)
65adantr 480 . . . . . . . . . . . . . 14 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ≠ 0𝑝)
7 0nn0 11345 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
8 dgrcl 24034 . . . . . . . . . . . . . . . . . . 19 ( ∈ (Poly‘ℤ) → (deg‘) ∈ ℕ0)
93, 8syl 17 . . . . . . . . . . . . . . . . . 18 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (deg‘) ∈ ℕ0)
10 prssi 4385 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℕ0 ∧ (deg‘) ∈ ℕ0) → {0, (deg‘)} ⊆ ℕ0)
117, 9, 10sylancr 696 . . . . . . . . . . . . . . . . 17 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → {0, (deg‘)} ⊆ ℕ0)
12 ssrab2 3720 . . . . . . . . . . . . . . . . . 18 {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ ℕ0
1312a1i 11 . . . . . . . . . . . . . . . . 17 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ ℕ0)
1411, 13unssd 3822 . . . . . . . . . . . . . . . 16 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℕ0)
15 nn0ssre 11334 . . . . . . . . . . . . . . . . 17 0 ⊆ ℝ
16 ressxr 10121 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℝ*
1715, 16sstri 3645 . . . . . . . . . . . . . . . 16 0 ⊆ ℝ*
1814, 17syl6ss 3648 . . . . . . . . . . . . . . 15 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*)
19 fvex 6239 . . . . . . . . . . . . . . . . 17 (deg‘) ∈ V
2019prid2 4330 . . . . . . . . . . . . . . . 16 (deg‘) ∈ {0, (deg‘)}
21 elun1 3813 . . . . . . . . . . . . . . . 16 ((deg‘) ∈ {0, (deg‘)} → (deg‘) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
2220, 21ax-mp 5 . . . . . . . . . . . . . . 15 (deg‘) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})
23 supxrub 12192 . . . . . . . . . . . . . . 15 ((({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ* ∧ (deg‘) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})) → (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
2418, 22, 23sylancl 695 . . . . . . . . . . . . . 14 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
2518adantr 480 . . . . . . . . . . . . . . . 16 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*)
26 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (((coeff‘)‘𝑒) = 0 → (abs‘((coeff‘)‘𝑒)) = (abs‘0))
27 abs0 14069 . . . . . . . . . . . . . . . . . . . 20 (abs‘0) = 0
2826, 27syl6eq 2701 . . . . . . . . . . . . . . . . . . 19 (((coeff‘)‘𝑒) = 0 → (abs‘((coeff‘)‘𝑒)) = 0)
29 c0ex 10072 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ V
3029prid1 4329 . . . . . . . . . . . . . . . . . . . 20 0 ∈ {0, (deg‘)}
31 elun1 3813 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {0, (deg‘)} → 0 ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . . . 19 0 ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})
3328, 32syl6eqel 2738 . . . . . . . . . . . . . . . . . 18 (((coeff‘)‘𝑒) = 0 → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
3433adantl 481 . . . . . . . . . . . . . . . . 17 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) = 0) → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
35 0z 11426 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℤ
36 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . 24 (coeff‘) = (coeff‘)
3736coef2 24032 . . . . . . . . . . . . . . . . . . . . . . 23 (( ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘):ℕ0⟶ℤ)
383, 35, 37sylancl 695 . . . . . . . . . . . . . . . . . . . . . 22 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (coeff‘):ℕ0⟶ℤ)
3938ffvelrnda 6399 . . . . . . . . . . . . . . . . . . . . 21 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → ((coeff‘)‘𝑒) ∈ ℤ)
40 nn0abscl 14096 . . . . . . . . . . . . . . . . . . . . 21 (((coeff‘)‘𝑒) ∈ ℤ → (abs‘((coeff‘)‘𝑒)) ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . . . . . . . . . . . 20 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → (abs‘((coeff‘)‘𝑒)) ∈ ℕ0)
4241adantr 480 . . . . . . . . . . . . . . . . . . 19 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (abs‘((coeff‘)‘𝑒)) ∈ ℕ0)
43 simplr 807 . . . . . . . . . . . . . . . . . . . . 21 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ∈ ℕ0)
449ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (deg‘) ∈ ℕ0)
453ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → ∈ (Poly‘ℤ))
46 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → ((coeff‘)‘𝑒) ≠ 0)
47 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . 23 (deg‘) = (deg‘)
4836, 47dgrub 24035 . . . . . . . . . . . . . . . . . . . . . 22 (( ∈ (Poly‘ℤ) ∧ 𝑒 ∈ ℕ0 ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ≤ (deg‘))
4945, 43, 46, 48syl3anc 1366 . . . . . . . . . . . . . . . . . . . . 21 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ≤ (deg‘))
50 elfz2nn0 12469 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 ∈ (0...(deg‘)) ↔ (𝑒 ∈ ℕ0 ∧ (deg‘) ∈ ℕ0𝑒 ≤ (deg‘)))
5143, 44, 49, 50syl3anbrc 1265 . . . . . . . . . . . . . . . . . . . 20 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ∈ (0...(deg‘)))
52 eqid 2651 . . . . . . . . . . . . . . . . . . . 20 (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑒))
53 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑒 → ((coeff‘)‘𝑖) = ((coeff‘)‘𝑒))
5453fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑒 → (abs‘((coeff‘)‘𝑖)) = (abs‘((coeff‘)‘𝑒)))
5554eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑒 → ((abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖)) ↔ (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑒))))
5655rspcev 3340 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 ∈ (0...(deg‘)) ∧ (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑒))) → ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖)))
5751, 52, 56sylancl 695 . . . . . . . . . . . . . . . . . . 19 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖)))
58 eqeq1 2655 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (abs‘((coeff‘)‘𝑒)) → (𝑔 = (abs‘((coeff‘)‘𝑖)) ↔ (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖))))
5958rexbidv 3081 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (abs‘((coeff‘)‘𝑒)) → (∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖)) ↔ ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖))))
6059elrab 3396 . . . . . . . . . . . . . . . . . . 19 ((abs‘((coeff‘)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ↔ ((abs‘((coeff‘)‘𝑒)) ∈ ℕ0 ∧ ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖))))
6142, 57, 60sylanbrc 699 . . . . . . . . . . . . . . . . . 18 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (abs‘((coeff‘)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})
62 elun2 3814 . . . . . . . . . . . . . . . . . 18 ((abs‘((coeff‘)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
6361, 62syl 17 . . . . . . . . . . . . . . . . 17 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
6434, 63pm2.61dane 2910 . . . . . . . . . . . . . . . 16 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
65 supxrub 12192 . . . . . . . . . . . . . . . 16 ((({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ* ∧ (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})) → (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
6625, 64, 65syl2anc 694 . . . . . . . . . . . . . . 15 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
6766ralrimiva 2995 . . . . . . . . . . . . . 14 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
686, 24, 673jca 1261 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
69683adant2 1100 . . . . . . . . . . . 12 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
70 neeq1 2885 . . . . . . . . . . . . . 14 (𝑑 = → (𝑑 ≠ 0𝑝 ≠ 0𝑝))
71 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑑 = → (deg‘𝑑) = (deg‘))
7271breq1d 4695 . . . . . . . . . . . . . 14 (𝑑 = → ((deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ↔ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
73 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑑 = → (coeff‘𝑑) = (coeff‘))
7473fveq1d 6231 . . . . . . . . . . . . . . . . 17 (𝑑 = → ((coeff‘𝑑)‘𝑒) = ((coeff‘)‘𝑒))
7574fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑑 = → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘)‘𝑒)))
7675breq1d 4695 . . . . . . . . . . . . . . 15 (𝑑 = → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ↔ (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
7776ralbidv 3015 . . . . . . . . . . . . . 14 (𝑑 = → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
7870, 72, 773anbi123d 1439 . . . . . . . . . . . . 13 (𝑑 = → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )) ↔ ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))))
7978elrab 3396 . . . . . . . . . . . 12 ( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} ↔ ( ∈ (Poly‘ℤ) ∧ ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))))
804, 69, 79sylanbrc 699 . . . . . . . . . . 11 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))})
81 simp2 1082 . . . . . . . . . . 11 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → (𝑔) = 0)
82 fveq1 6228 . . . . . . . . . . . . 13 (𝑐 = → (𝑐𝑔) = (𝑔))
8382eqeq1d 2653 . . . . . . . . . . . 12 (𝑐 = → ((𝑐𝑔) = 0 ↔ (𝑔) = 0))
8483rspcev 3340 . . . . . . . . . . 11 (( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} ∧ (𝑔) = 0) → ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0)
8580, 81, 84syl2anc 694 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0)
86 fveq2 6229 . . . . . . . . . . . . 13 (𝑏 = 𝑔 → (𝑐𝑏) = (𝑐𝑔))
8786eqeq1d 2653 . . . . . . . . . . . 12 (𝑏 = 𝑔 → ((𝑐𝑏) = 0 ↔ (𝑐𝑔) = 0))
8887rexbidv 3081 . . . . . . . . . . 11 (𝑏 = 𝑔 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0))
8988elrab 3396 . . . . . . . . . 10 (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ↔ (𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0))
901, 85, 89sylanbrc 699 . . . . . . . . 9 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → 𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0})
91 prfi 8276 . . . . . . . . . . . . . . 15 {0, (deg‘)} ∈ Fin
92 fzfi 12811 . . . . . . . . . . . . . . . . 17 (0...(deg‘)) ∈ Fin
93 abrexfi 8307 . . . . . . . . . . . . . . . . 17 ((0...(deg‘)) ∈ Fin → {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin)
9492, 93ax-mp 5 . . . . . . . . . . . . . . . 16 {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin
95 rabssab 3723 . . . . . . . . . . . . . . . 16 {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}
96 ssfi 8221 . . . . . . . . . . . . . . . 16 (({𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin ∧ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) → {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin)
9794, 95, 96mp2an 708 . . . . . . . . . . . . . . 15 {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin
98 unfi 8268 . . . . . . . . . . . . . . 15 (({0, (deg‘)} ∈ Fin ∧ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin)
9991, 97, 98mp2an 708 . . . . . . . . . . . . . 14 ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin
10099a1i 11 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin)
10122ne0ii 3956 . . . . . . . . . . . . . 14 ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅
102101a1i 11 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅)
103 xrltso 12012 . . . . . . . . . . . . . 14 < Or ℝ*
104 fisupcl 8416 . . . . . . . . . . . . . 14 (( < Or ℝ* ∧ (({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅ ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*)) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
105103, 104mpan 706 . . . . . . . . . . . . 13 ((({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅ ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
106100, 102, 18, 105syl3anc 1366 . . . . . . . . . . . 12 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
10714, 106sseldd 3637 . . . . . . . . . . 11 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ℕ0)
1081073adant2 1100 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ℕ0)
109 eqidd 2652 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0})
110 breq2 4689 . . . . . . . . . . . . . . . 16 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
111 breq2 4689 . . . . . . . . . . . . . . . . 17 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
112111ralbidv 3015 . . . . . . . . . . . . . . . 16 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
113110, 1123anbi23d 1442 . . . . . . . . . . . . . . 15 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))))
114113rabbidv 3220 . . . . . . . . . . . . . 14 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} = {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))})
115114rexeqdv 3175 . . . . . . . . . . . . 13 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0))
116115rabbidv 3220 . . . . . . . . . . . 12 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0})
117116eqeq2d 2661 . . . . . . . . . . 11 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ({𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0}))
118117rspcev 3340 . . . . . . . . . 10 ((sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ℕ0 ∧ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0}) → ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
119108, 109, 118syl2anc 694 . . . . . . . . 9 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
120 cnex 10055 . . . . . . . . . . 11 ℂ ∈ V
121120rabex 4845 . . . . . . . . . 10 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ∈ V
122 eleq2 2719 . . . . . . . . . . 11 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → (𝑔𝑓𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0}))
123 eqeq1 2655 . . . . . . . . . . . 12 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
124123rexbidv 3081 . . . . . . . . . . 11 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → (∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
125122, 124anbi12d 747 . . . . . . . . . 10 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → ((𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) ↔ (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ∧ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})))
126121, 125spcev 3331 . . . . . . . . 9 ((𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ∧ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
12790, 119, 126syl2anc 694 . . . . . . . 8 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
1281273exp 1283 . . . . . . 7 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ((𝑔) = 0 → (𝑔 ∈ ℂ → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))))
129128rexlimiv 3056 . . . . . 6 (∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0 → (𝑔 ∈ ℂ → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})))
130129impcom 445 . . . . 5 ((𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0) → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
131 eleq2 2719 . . . . . . . . 9 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔𝑓𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
13287rexbidv 3081 . . . . . . . . . . 11 (𝑏 = 𝑔 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0))
133132elrab 3396 . . . . . . . . . 10 (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ (𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0))
134 simp1 1081 . . . . . . . . . . . . . . 15 (( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎) → ≠ 0𝑝)
135134anim2i 592 . . . . . . . . . . . . . 14 (( ∈ (Poly‘ℤ) ∧ ( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎)) → ( ∈ (Poly‘ℤ) ∧ ≠ 0𝑝))
13671breq1d 4695 . . . . . . . . . . . . . . . 16 (𝑑 = → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘) ≤ 𝑎))
13775breq1d 4695 . . . . . . . . . . . . . . . . 17 (𝑑 = → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘)‘𝑒)) ≤ 𝑎))
138137ralbidv 3015 . . . . . . . . . . . . . . . 16 (𝑑 = → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎))
13970, 136, 1383anbi123d 1439 . . . . . . . . . . . . . . 15 (𝑑 = → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ ( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎)))
140139elrab 3396 . . . . . . . . . . . . . 14 ( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ↔ ( ∈ (Poly‘ℤ) ∧ ( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎)))
141 eldifsn 4350 . . . . . . . . . . . . . 14 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ( ∈ (Poly‘ℤ) ∧ ≠ 0𝑝))
142135, 140, 1413imtr4i 281 . . . . . . . . . . . . 13 ( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} → ∈ ((Poly‘ℤ) ∖ {0𝑝}))
143142ssriv 3640 . . . . . . . . . . . 12 {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖ {0𝑝})
144 ssrexv 3700 . . . . . . . . . . . . 13 ({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖ {0𝑝}) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0 → ∃𝑐 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑐𝑔) = 0))
14583cbvrexv 3202 . . . . . . . . . . . . 13 (∃𝑐 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑐𝑔) = 0 ↔ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)
146144, 145syl6ib 241 . . . . . . . . . . . 12 ({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖ {0𝑝}) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0 → ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
147143, 146ax-mp 5 . . . . . . . . . . 11 (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0 → ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)
148147anim2i 592 . . . . . . . . . 10 ((𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0) → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
149133, 148sylbi 207 . . . . . . . . 9 (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
150131, 149syl6bi 243 . . . . . . . 8 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔𝑓 → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)))
151150rexlimivw 3058 . . . . . . 7 (∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔𝑓 → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)))
152151impcom 445 . . . . . 6 ((𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
153152exlimiv 1898 . . . . 5 (∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
154130, 153impbii 199 . . . 4 ((𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0) ↔ ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
155 elaa 24116 . . . 4 (𝑔 ∈ 𝔸 ↔ (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
156 eluniab 4479 . . . 4 (𝑔 {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}} ↔ ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
157154, 155, 1563bitr4i 292 . . 3 (𝑔 ∈ 𝔸 ↔ 𝑔 {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}})
158157eqriv 2648 . 2 𝔸 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}}
159 aannenlem.a . . . 4 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
160159rnmpt 5403 . . 3 ran 𝐻 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}}
161160unieqi 4477 . 2 ran 𝐻 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}}
162158, 161eqtr4i 2676 1 𝔸 = ran 𝐻
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wne 2823  wral 2941  wrex 2942  {crab 2945  cdif 3604  cun 3605  wss 3607  c0 3948  {csn 4210  {cpr 4212   cuni 4468   class class class wbr 4685  cmpt 4762   Or wor 5063  ran crn 5144  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  cc 9972  cr 9973  0cc0 9974  *cxr 10111   < clt 10112  cle 10113  0cn0 11330  cz 11415  ...cfz 12364  abscabs 14018  0𝑝c0p 23481  Polycply 23985  coeffccoe 23987  degcdgr 23988  𝔸caa 24114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-0p 23482  df-ply 23989  df-coe 23991  df-dgr 23992  df-aa 24115
This theorem is referenced by:  aannenlem3  24130
  Copyright terms: Public domain W3C validator