Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem2 Structured version   Visualization version   GIF version

Theorem aannenlem2 24129
 Description: Lemma for aannen 24131. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem2 𝔸 = ran 𝐻
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem2
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1083 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → 𝑔 ∈ ℂ)
2 eldifi 3765 . . . . . . . . . . . . . 14 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ∈ (Poly‘ℤ))
32adantr 480 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ∈ (Poly‘ℤ))
433adant2 1100 . . . . . . . . . . . 12 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∈ (Poly‘ℤ))
5 eldifsni 4353 . . . . . . . . . . . . . . 15 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ≠ 0𝑝)
65adantr 480 . . . . . . . . . . . . . 14 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ≠ 0𝑝)
7 0nn0 11345 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
8 dgrcl 24034 . . . . . . . . . . . . . . . . . . 19 ( ∈ (Poly‘ℤ) → (deg‘) ∈ ℕ0)
93, 8syl 17 . . . . . . . . . . . . . . . . . 18 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (deg‘) ∈ ℕ0)
10 prssi 4385 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℕ0 ∧ (deg‘) ∈ ℕ0) → {0, (deg‘)} ⊆ ℕ0)
117, 9, 10sylancr 696 . . . . . . . . . . . . . . . . 17 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → {0, (deg‘)} ⊆ ℕ0)
12 ssrab2 3720 . . . . . . . . . . . . . . . . . 18 {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ ℕ0
1312a1i 11 . . . . . . . . . . . . . . . . 17 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ ℕ0)
1411, 13unssd 3822 . . . . . . . . . . . . . . . 16 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℕ0)
15 nn0ssre 11334 . . . . . . . . . . . . . . . . 17 0 ⊆ ℝ
16 ressxr 10121 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℝ*
1715, 16sstri 3645 . . . . . . . . . . . . . . . 16 0 ⊆ ℝ*
1814, 17syl6ss 3648 . . . . . . . . . . . . . . 15 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*)
19 fvex 6239 . . . . . . . . . . . . . . . . 17 (deg‘) ∈ V
2019prid2 4330 . . . . . . . . . . . . . . . 16 (deg‘) ∈ {0, (deg‘)}
21 elun1 3813 . . . . . . . . . . . . . . . 16 ((deg‘) ∈ {0, (deg‘)} → (deg‘) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
2220, 21ax-mp 5 . . . . . . . . . . . . . . 15 (deg‘) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})
23 supxrub 12192 . . . . . . . . . . . . . . 15 ((({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ* ∧ (deg‘) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})) → (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
2418, 22, 23sylancl 695 . . . . . . . . . . . . . 14 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
2518adantr 480 . . . . . . . . . . . . . . . 16 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*)
26 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (((coeff‘)‘𝑒) = 0 → (abs‘((coeff‘)‘𝑒)) = (abs‘0))
27 abs0 14069 . . . . . . . . . . . . . . . . . . . 20 (abs‘0) = 0
2826, 27syl6eq 2701 . . . . . . . . . . . . . . . . . . 19 (((coeff‘)‘𝑒) = 0 → (abs‘((coeff‘)‘𝑒)) = 0)
29 c0ex 10072 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ V
3029prid1 4329 . . . . . . . . . . . . . . . . . . . 20 0 ∈ {0, (deg‘)}
31 elun1 3813 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {0, (deg‘)} → 0 ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . . . 19 0 ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})
3328, 32syl6eqel 2738 . . . . . . . . . . . . . . . . . 18 (((coeff‘)‘𝑒) = 0 → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
3433adantl 481 . . . . . . . . . . . . . . . . 17 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) = 0) → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
35 0z 11426 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℤ
36 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . 24 (coeff‘) = (coeff‘)
3736coef2 24032 . . . . . . . . . . . . . . . . . . . . . . 23 (( ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘):ℕ0⟶ℤ)
383, 35, 37sylancl 695 . . . . . . . . . . . . . . . . . . . . . 22 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → (coeff‘):ℕ0⟶ℤ)
3938ffvelrnda 6399 . . . . . . . . . . . . . . . . . . . . 21 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → ((coeff‘)‘𝑒) ∈ ℤ)
40 nn0abscl 14096 . . . . . . . . . . . . . . . . . . . . 21 (((coeff‘)‘𝑒) ∈ ℤ → (abs‘((coeff‘)‘𝑒)) ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . . . . . . . . . . . 20 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → (abs‘((coeff‘)‘𝑒)) ∈ ℕ0)
4241adantr 480 . . . . . . . . . . . . . . . . . . 19 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (abs‘((coeff‘)‘𝑒)) ∈ ℕ0)
43 simplr 807 . . . . . . . . . . . . . . . . . . . . 21 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ∈ ℕ0)
449ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (deg‘) ∈ ℕ0)
453ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → ∈ (Poly‘ℤ))
46 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → ((coeff‘)‘𝑒) ≠ 0)
47 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . 23 (deg‘) = (deg‘)
4836, 47dgrub 24035 . . . . . . . . . . . . . . . . . . . . . 22 (( ∈ (Poly‘ℤ) ∧ 𝑒 ∈ ℕ0 ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ≤ (deg‘))
4945, 43, 46, 48syl3anc 1366 . . . . . . . . . . . . . . . . . . . . 21 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ≤ (deg‘))
50 elfz2nn0 12469 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 ∈ (0...(deg‘)) ↔ (𝑒 ∈ ℕ0 ∧ (deg‘) ∈ ℕ0𝑒 ≤ (deg‘)))
5143, 44, 49, 50syl3anbrc 1265 . . . . . . . . . . . . . . . . . . . 20 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → 𝑒 ∈ (0...(deg‘)))
52 eqid 2651 . . . . . . . . . . . . . . . . . . . 20 (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑒))
53 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑒 → ((coeff‘)‘𝑖) = ((coeff‘)‘𝑒))
5453fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑒 → (abs‘((coeff‘)‘𝑖)) = (abs‘((coeff‘)‘𝑒)))
5554eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑒 → ((abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖)) ↔ (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑒))))
5655rspcev 3340 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 ∈ (0...(deg‘)) ∧ (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑒))) → ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖)))
5751, 52, 56sylancl 695 . . . . . . . . . . . . . . . . . . 19 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖)))
58 eqeq1 2655 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (abs‘((coeff‘)‘𝑒)) → (𝑔 = (abs‘((coeff‘)‘𝑖)) ↔ (abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖))))
5958rexbidv 3081 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (abs‘((coeff‘)‘𝑒)) → (∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖)) ↔ ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖))))
6059elrab 3396 . . . . . . . . . . . . . . . . . . 19 ((abs‘((coeff‘)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ↔ ((abs‘((coeff‘)‘𝑒)) ∈ ℕ0 ∧ ∃𝑖 ∈ (0...(deg‘))(abs‘((coeff‘)‘𝑒)) = (abs‘((coeff‘)‘𝑖))))
6142, 57, 60sylanbrc 699 . . . . . . . . . . . . . . . . . 18 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (abs‘((coeff‘)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})
62 elun2 3814 . . . . . . . . . . . . . . . . . 18 ((abs‘((coeff‘)‘𝑒)) ∈ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
6361, 62syl 17 . . . . . . . . . . . . . . . . 17 (((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) ∧ ((coeff‘)‘𝑒) ≠ 0) → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
6434, 63pm2.61dane 2910 . . . . . . . . . . . . . . . 16 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
65 supxrub 12192 . . . . . . . . . . . . . . . 16 ((({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ* ∧ (abs‘((coeff‘)‘𝑒)) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))})) → (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
6625, 64, 65syl2anc 694 . . . . . . . . . . . . . . 15 ((( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) ∧ 𝑒 ∈ ℕ0) → (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
6766ralrimiva 2995 . . . . . . . . . . . . . 14 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))
686, 24, 673jca 1261 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
69683adant2 1100 . . . . . . . . . . . 12 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
70 neeq1 2885 . . . . . . . . . . . . . 14 (𝑑 = → (𝑑 ≠ 0𝑝 ≠ 0𝑝))
71 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑑 = → (deg‘𝑑) = (deg‘))
7271breq1d 4695 . . . . . . . . . . . . . 14 (𝑑 = → ((deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ↔ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
73 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑑 = → (coeff‘𝑑) = (coeff‘))
7473fveq1d 6231 . . . . . . . . . . . . . . . . 17 (𝑑 = → ((coeff‘𝑑)‘𝑒) = ((coeff‘)‘𝑒))
7574fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑑 = → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘)‘𝑒)))
7675breq1d 4695 . . . . . . . . . . . . . . 15 (𝑑 = → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ↔ (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
7776ralbidv 3015 . . . . . . . . . . . . . 14 (𝑑 = → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
7870, 72, 773anbi123d 1439 . . . . . . . . . . . . 13 (𝑑 = → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )) ↔ ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))))
7978elrab 3396 . . . . . . . . . . . 12 ( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} ↔ ( ∈ (Poly‘ℤ) ∧ ( ≠ 0𝑝 ∧ (deg‘) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))))
804, 69, 79sylanbrc 699 . . . . . . . . . . 11 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))})
81 simp2 1082 . . . . . . . . . . 11 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → (𝑔) = 0)
82 fveq1 6228 . . . . . . . . . . . . 13 (𝑐 = → (𝑐𝑔) = (𝑔))
8382eqeq1d 2653 . . . . . . . . . . . 12 (𝑐 = → ((𝑐𝑔) = 0 ↔ (𝑔) = 0))
8483rspcev 3340 . . . . . . . . . . 11 (( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} ∧ (𝑔) = 0) → ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0)
8580, 81, 84syl2anc 694 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0)
86 fveq2 6229 . . . . . . . . . . . . 13 (𝑏 = 𝑔 → (𝑐𝑏) = (𝑐𝑔))
8786eqeq1d 2653 . . . . . . . . . . . 12 (𝑏 = 𝑔 → ((𝑐𝑏) = 0 ↔ (𝑐𝑔) = 0))
8887rexbidv 3081 . . . . . . . . . . 11 (𝑏 = 𝑔 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0))
8988elrab 3396 . . . . . . . . . 10 (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ↔ (𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑔) = 0))
901, 85, 89sylanbrc 699 . . . . . . . . 9 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → 𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0})
91 prfi 8276 . . . . . . . . . . . . . . 15 {0, (deg‘)} ∈ Fin
92 fzfi 12811 . . . . . . . . . . . . . . . . 17 (0...(deg‘)) ∈ Fin
93 abrexfi 8307 . . . . . . . . . . . . . . . . 17 ((0...(deg‘)) ∈ Fin → {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin)
9492, 93ax-mp 5 . . . . . . . . . . . . . . . 16 {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin
95 rabssab 3723 . . . . . . . . . . . . . . . 16 {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}
96 ssfi 8221 . . . . . . . . . . . . . . . 16 (({𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin ∧ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ⊆ {𝑔 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) → {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin)
9794, 95, 96mp2an 708 . . . . . . . . . . . . . . 15 {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin
98 unfi 8268 . . . . . . . . . . . . . . 15 (({0, (deg‘)} ∈ Fin ∧ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))} ∈ Fin) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin)
9991, 97, 98mp2an 708 . . . . . . . . . . . . . 14 ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin
10099a1i 11 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin)
10122ne0ii 3956 . . . . . . . . . . . . . 14 ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅
102101a1i 11 . . . . . . . . . . . . 13 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅)
103 xrltso 12012 . . . . . . . . . . . . . 14 < Or ℝ*
104 fisupcl 8416 . . . . . . . . . . . . . 14 (( < Or ℝ* ∧ (({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅ ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*)) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
105103, 104mpan 706 . . . . . . . . . . . . 13 ((({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ∈ Fin ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ≠ ∅ ∧ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}) ⊆ ℝ*) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
106100, 102, 18, 105syl3anc 1366 . . . . . . . . . . . 12 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}))
10714, 106sseldd 3637 . . . . . . . . . . 11 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ 𝑔 ∈ ℂ) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ℕ0)
1081073adant2 1100 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ℕ0)
109 eqidd 2652 . . . . . . . . . 10 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0})
110 breq2 4689 . . . . . . . . . . . . . . . 16 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
111 breq2 4689 . . . . . . . . . . . . . . . . 17 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
112111ralbidv 3015 . . . . . . . . . . . . . . . 16 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < )))
113110, 1123anbi23d 1442 . . . . . . . . . . . . . . 15 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))))
114113rabbidv 3220 . . . . . . . . . . . . . 14 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} = {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))})
115114rexeqdv 3175 . . . . . . . . . . . . 13 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0))
116115rabbidv 3220 . . . . . . . . . . . 12 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0})
117116eqeq2d 2661 . . . . . . . . . . 11 (𝑎 = sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) → ({𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0}))
118117rspcev 3340 . . . . . . . . . 10 ((sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∈ ℕ0 ∧ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0}) → ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
119108, 109, 118syl2anc 694 . . . . . . . . 9 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
120 cnex 10055 . . . . . . . . . . 11 ℂ ∈ V
121120rabex 4845 . . . . . . . . . 10 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ∈ V
122 eleq2 2719 . . . . . . . . . . 11 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → (𝑔𝑓𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0}))
123 eqeq1 2655 . . . . . . . . . . . 12 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
124123rexbidv 3081 . . . . . . . . . . 11 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → (∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
125122, 124anbi12d 747 . . . . . . . . . 10 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} → ((𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) ↔ (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ∧ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})))
126121, 125spcev 3331 . . . . . . . . 9 ((𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} ∧ ∃𝑎 ∈ ℕ0 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ sup(({0, (deg‘)} ∪ {𝑔 ∈ ℕ0 ∣ ∃𝑖 ∈ (0...(deg‘))𝑔 = (abs‘((coeff‘)‘𝑖))}), ℝ*, < ))} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
12790, 119, 126syl2anc 694 . . . . . . . 8 (( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔) = 0 ∧ 𝑔 ∈ ℂ) → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
1281273exp 1283 . . . . . . 7 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ((𝑔) = 0 → (𝑔 ∈ ℂ → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))))
129128rexlimiv 3056 . . . . . 6 (∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0 → (𝑔 ∈ ℂ → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})))
130129impcom 445 . . . . 5 ((𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0) → ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
131 eleq2 2719 . . . . . . . . 9 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔𝑓𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
13287rexbidv 3081 . . . . . . . . . . 11 (𝑏 = 𝑔 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0))
133132elrab 3396 . . . . . . . . . 10 (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ↔ (𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0))
134 simp1 1081 . . . . . . . . . . . . . . 15 (( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎) → ≠ 0𝑝)
135134anim2i 592 . . . . . . . . . . . . . 14 (( ∈ (Poly‘ℤ) ∧ ( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎)) → ( ∈ (Poly‘ℤ) ∧ ≠ 0𝑝))
13671breq1d 4695 . . . . . . . . . . . . . . . 16 (𝑑 = → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘) ≤ 𝑎))
13775breq1d 4695 . . . . . . . . . . . . . . . . 17 (𝑑 = → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘)‘𝑒)) ≤ 𝑎))
138137ralbidv 3015 . . . . . . . . . . . . . . . 16 (𝑑 = → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎))
13970, 136, 1383anbi123d 1439 . . . . . . . . . . . . . . 15 (𝑑 = → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ ( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎)))
140139elrab 3396 . . . . . . . . . . . . . 14 ( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ↔ ( ∈ (Poly‘ℤ) ∧ ( ≠ 0𝑝 ∧ (deg‘) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘)‘𝑒)) ≤ 𝑎)))
141 eldifsn 4350 . . . . . . . . . . . . . 14 ( ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ( ∈ (Poly‘ℤ) ∧ ≠ 0𝑝))
142135, 140, 1413imtr4i 281 . . . . . . . . . . . . 13 ( ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} → ∈ ((Poly‘ℤ) ∖ {0𝑝}))
143142ssriv 3640 . . . . . . . . . . . 12 {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖ {0𝑝})
144 ssrexv 3700 . . . . . . . . . . . . 13 ({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖ {0𝑝}) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0 → ∃𝑐 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑐𝑔) = 0))
14583cbvrexv 3202 . . . . . . . . . . . . 13 (∃𝑐 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑐𝑔) = 0 ↔ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)
146144, 145syl6ib 241 . . . . . . . . . . . 12 ({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} ⊆ ((Poly‘ℤ) ∖ {0𝑝}) → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0 → ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
147143, 146ax-mp 5 . . . . . . . . . . 11 (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0 → ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)
148147anim2i 592 . . . . . . . . . 10 ((𝑔 ∈ ℂ ∧ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑔) = 0) → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
149133, 148sylbi 207 . . . . . . . . 9 (𝑔 ∈ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
150131, 149syl6bi 243 . . . . . . . 8 (𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔𝑓 → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)))
151150rexlimivw 3058 . . . . . . 7 (∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} → (𝑔𝑓 → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0)))
152151impcom 445 . . . . . 6 ((𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
153152exlimiv 1898 . . . . 5 (∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}) → (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
154130, 153impbii 199 . . . 4 ((𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0) ↔ ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
155 elaa 24116 . . . 4 (𝑔 ∈ 𝔸 ↔ (𝑔 ∈ ℂ ∧ ∃ ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔) = 0))
156 eluniab 4479 . . . 4 (𝑔 {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}} ↔ ∃𝑓(𝑔𝑓 ∧ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}))
157154, 155, 1563bitr4i 292 . . 3 (𝑔 ∈ 𝔸 ↔ 𝑔 {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}})
158157eqriv 2648 . 2 𝔸 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}}
159 aannenlem.a . . . 4 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
160159rnmpt 5403 . . 3 ran 𝐻 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}}
161160unieqi 4477 . 2 ran 𝐻 = {𝑓 ∣ ∃𝑎 ∈ ℕ0 𝑓 = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0}}
162158, 161eqtr4i 2676 1 𝔸 = ran 𝐻
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030  {cab 2637   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {crab 2945   ∖ cdif 3604   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  {csn 4210  {cpr 4212  ∪ cuni 4468   class class class wbr 4685   ↦ cmpt 4762   Or wor 5063  ran crn 5144  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  ℂcc 9972  ℝcr 9973  0cc0 9974  ℝ*cxr 10111   < clt 10112   ≤ cle 10113  ℕ0cn0 11330  ℤcz 11415  ...cfz 12364  abscabs 14018  0𝑝c0p 23481  Polycply 23985  coeffccoe 23987  degcdgr 23988  𝔸caa 24114 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-0p 23482  df-ply 23989  df-coe 23991  df-dgr 23992  df-aa 24115 This theorem is referenced by:  aannenlem3  24130
 Copyright terms: Public domain W3C validator