MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem1 Structured version   Visualization version   GIF version

Theorem aalioulem1 24306
Description: Lemma for aaliou 24312. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
aalioulem1.a (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem1.b (𝜑𝑋 ∈ ℤ)
aalioulem1.c (𝜑𝑌 ∈ ℕ)
Assertion
Ref Expression
aalioulem1 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)

Proof of Theorem aalioulem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem1.a . . . . 5 (𝜑𝐹 ∈ (Poly‘ℤ))
2 aalioulem1.b . . . . . . 7 (𝜑𝑋 ∈ ℤ)
32zcnd 11684 . . . . . 6 (𝜑𝑋 ∈ ℂ)
4 aalioulem1.c . . . . . . 7 (𝜑𝑌 ∈ ℕ)
54nncnd 11237 . . . . . 6 (𝜑𝑌 ∈ ℂ)
64nnne0d 11266 . . . . . 6 (𝜑𝑌 ≠ 0)
73, 5, 6divcld 11002 . . . . 5 (𝜑 → (𝑋 / 𝑌) ∈ ℂ)
8 eqid 2770 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
9 eqid 2770 . . . . . 6 (deg‘𝐹) = (deg‘𝐹)
108, 9coeid2 24214 . . . . 5 ((𝐹 ∈ (Poly‘ℤ) ∧ (𝑋 / 𝑌) ∈ ℂ) → (𝐹‘(𝑋 / 𝑌)) = Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)))
111, 7, 10syl2anc 565 . . . 4 (𝜑 → (𝐹‘(𝑋 / 𝑌)) = Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)))
1211oveq1d 6807 . . 3 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) = (Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
13 fzfid 12979 . . . 4 (𝜑 → (0...(deg‘𝐹)) ∈ Fin)
14 dgrcl 24208 . . . . . 6 (𝐹 ∈ (Poly‘ℤ) → (deg‘𝐹) ∈ ℕ0)
151, 14syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
165, 15expcld 13214 . . . 4 (𝜑 → (𝑌↑(deg‘𝐹)) ∈ ℂ)
17 0z 11589 . . . . . . . 8 0 ∈ ℤ
188coef2 24206 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝐹):ℕ0⟶ℤ)
191, 17, 18sylancl 566 . . . . . . 7 (𝜑 → (coeff‘𝐹):ℕ0⟶ℤ)
20 elfznn0 12639 . . . . . . 7 (𝑎 ∈ (0...(deg‘𝐹)) → 𝑎 ∈ ℕ0)
21 ffvelrn 6500 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶ℤ ∧ 𝑎 ∈ ℕ0) → ((coeff‘𝐹)‘𝑎) ∈ ℤ)
2219, 20, 21syl2an 575 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑎) ∈ ℤ)
2322zcnd 11684 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑎) ∈ ℂ)
24 expcl 13084 . . . . . 6 (((𝑋 / 𝑌) ∈ ℂ ∧ 𝑎 ∈ ℕ0) → ((𝑋 / 𝑌)↑𝑎) ∈ ℂ)
257, 20, 24syl2an 575 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑋 / 𝑌)↑𝑎) ∈ ℂ)
2623, 25mulcld 10261 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) ∈ ℂ)
2713, 16, 26fsummulc1 14723 . . 3 (𝜑 → (Σ𝑎 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) = Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
2812, 27eqtrd 2804 . 2 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) = Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))))
295adantr 466 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℂ)
3015adantr 466 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℕ0)
3129, 30expcld 13214 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑(deg‘𝐹)) ∈ ℂ)
3223, 25, 31mulassd 10264 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) = (((coeff‘𝐹)‘𝑎) · (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹)))))
332adantr 466 . . . . . . . . . 10 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑋 ∈ ℤ)
3433zcnd 11684 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑋 ∈ ℂ)
356adantr 466 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ≠ 0)
3620adantl 467 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑎 ∈ ℕ0)
3734, 29, 35, 36expdivd 13228 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑋 / 𝑌)↑𝑎) = ((𝑋𝑎) / (𝑌𝑎)))
3837oveq1d 6807 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) = (((𝑋𝑎) / (𝑌𝑎)) · (𝑌↑(deg‘𝐹))))
3934, 36expcld 13214 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑋𝑎) ∈ ℂ)
40 nnexpcl 13079 . . . . . . . . . 10 ((𝑌 ∈ ℕ ∧ 𝑎 ∈ ℕ0) → (𝑌𝑎) ∈ ℕ)
414, 20, 40syl2an 575 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ∈ ℕ)
4241nncnd 11237 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ∈ ℂ)
4341nnne0d 11266 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌𝑎) ≠ 0)
4439, 42, 31, 43div13d 11026 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋𝑎) / (𝑌𝑎)) · (𝑌↑(deg‘𝐹))) = (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)))
4538, 44eqtrd 2804 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) = (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)))
46 elfzelz 12548 . . . . . . . . . 10 (𝑎 ∈ (0...(deg‘𝐹)) → 𝑎 ∈ ℤ)
4746adantl 467 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑎 ∈ ℤ)
4830nn0zd 11681 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℤ)
4929, 35, 47, 48expsubd 13225 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑((deg‘𝐹) − 𝑎)) = ((𝑌↑(deg‘𝐹)) / (𝑌𝑎)))
504adantr 466 . . . . . . . . . 10 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℕ)
5150nnzd 11682 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → 𝑌 ∈ ℤ)
52 fznn0sub 12579 . . . . . . . . . 10 (𝑎 ∈ (0...(deg‘𝐹)) → ((deg‘𝐹) − 𝑎) ∈ ℕ0)
5352adantl 467 . . . . . . . . 9 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((deg‘𝐹) − 𝑎) ∈ ℕ0)
54 zexpcl 13081 . . . . . . . . 9 ((𝑌 ∈ ℤ ∧ ((deg‘𝐹) − 𝑎) ∈ ℕ0) → (𝑌↑((deg‘𝐹) − 𝑎)) ∈ ℤ)
5551, 53, 54syl2anc 565 . . . . . . . 8 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑌↑((deg‘𝐹) − 𝑎)) ∈ ℤ)
5649, 55eqeltrrd 2850 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) ∈ ℤ)
57 zexpcl 13081 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑎 ∈ ℕ0) → (𝑋𝑎) ∈ ℤ)
582, 20, 57syl2an 575 . . . . . . 7 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (𝑋𝑎) ∈ ℤ)
5956, 58zmulcld 11689 . . . . . 6 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑌↑(deg‘𝐹)) / (𝑌𝑎)) · (𝑋𝑎)) ∈ ℤ)
6045, 59eqeltrd 2849 . . . . 5 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6122, 60zmulcld 11689 . . . 4 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑎) · (((𝑋 / 𝑌)↑𝑎) · (𝑌↑(deg‘𝐹)))) ∈ ℤ)
6232, 61eqeltrd 2849 . . 3 ((𝜑𝑎 ∈ (0...(deg‘𝐹))) → ((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6313, 62fsumzcl 14673 . 2 (𝜑 → Σ𝑎 ∈ (0...(deg‘𝐹))((((coeff‘𝐹)‘𝑎) · ((𝑋 / 𝑌)↑𝑎)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
6428, 63eqeltrd 2849 1 (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  wf 6027  cfv 6031  (class class class)co 6792  cc 10135  0cc0 10137   · cmul 10142  cmin 10467   / cdiv 10885  cn 11221  0cn0 11493  cz 11578  ...cfz 12532  cexp 13066  Σcsu 14623  Polycply 24159  coeffccoe 24161  degcdgr 24162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-sum 14624  df-0p 23656  df-ply 24163  df-coe 24165  df-dgr 24166
This theorem is referenced by:  aalioulem4  24309
  Copyright terms: Public domain W3C validator