![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aacjcl | Structured version Visualization version GIF version |
Description: The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
aacjcl | ⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 14044 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
2 | 1 | adantr 472 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → (∗‘𝐴) ∈ ℂ) |
3 | fveq2 6352 | . . . . . . 7 ⊢ ((𝑓‘𝐴) = 0 → (∗‘(𝑓‘𝐴)) = (∗‘0)) | |
4 | cj0 14097 | . . . . . . 7 ⊢ (∗‘0) = 0 | |
5 | 3, 4 | syl6eq 2810 | . . . . . 6 ⊢ ((𝑓‘𝐴) = 0 → (∗‘(𝑓‘𝐴)) = 0) |
6 | difss 3880 | . . . . . . . . . 10 ⊢ ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℤ) | |
7 | zssre 11576 | . . . . . . . . . . 11 ⊢ ℤ ⊆ ℝ | |
8 | ax-resscn 10185 | . . . . . . . . . . 11 ⊢ ℝ ⊆ ℂ | |
9 | plyss 24154 | . . . . . . . . . . 11 ⊢ ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ)) | |
10 | 7, 8, 9 | mp2an 710 | . . . . . . . . . 10 ⊢ (Poly‘ℤ) ⊆ (Poly‘ℝ) |
11 | 6, 10 | sstri 3753 | . . . . . . . . 9 ⊢ ((Poly‘ℤ) ∖ {0𝑝}) ⊆ (Poly‘ℝ) |
12 | 11 | sseli 3740 | . . . . . . . 8 ⊢ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑓 ∈ (Poly‘ℝ)) |
13 | id 22 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
14 | plyrecj 24234 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝑓‘𝐴)) = (𝑓‘(∗‘𝐴))) | |
15 | 12, 13, 14 | syl2anr 496 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → (∗‘(𝑓‘𝐴)) = (𝑓‘(∗‘𝐴))) |
16 | 15 | eqeq1d 2762 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((∗‘(𝑓‘𝐴)) = 0 ↔ (𝑓‘(∗‘𝐴)) = 0)) |
17 | 5, 16 | syl5ib 234 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})) → ((𝑓‘𝐴) = 0 → (𝑓‘(∗‘𝐴)) = 0)) |
18 | 17 | reximdva 3155 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)) |
19 | 18 | imp 444 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0) |
20 | 2, 19 | jca 555 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)) |
21 | elaa 24270 | . 2 ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | |
22 | elaa 24270 | . 2 ⊢ ((∗‘𝐴) ∈ 𝔸 ↔ ((∗‘𝐴) ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘(∗‘𝐴)) = 0)) | |
23 | 20, 21, 22 | 3imtr4i 281 | 1 ⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ∖ cdif 3712 ⊆ wss 3715 {csn 4321 ‘cfv 6049 ℂcc 10126 ℝcr 10127 0cc0 10128 ℤcz 11569 ∗ccj 14035 0𝑝c0p 23635 Polycply 24139 𝔸caa 24268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-fz 12520 df-fzo 12660 df-fl 12787 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-rlim 14419 df-sum 14616 df-0p 23636 df-ply 24143 df-coe 24145 df-dgr 24146 df-aa 24269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |